
REPORT DOCUMENTATION PAGE
Form Approved

 OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection
of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

5. FUNDING NUMBERS

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

 US Military Academy
Department of Electrical Engineering and Computer Science
West Point, NY 10996

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
 The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT

 Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OR REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 ON THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)

Prescribed by ANSI Std. 239-18
 298-102

Enclosure 1

CHANGE DETECTION IN XML DOCUMENTS

OF DIFFERING LEVELS OF STRUCTURAL VERBOSITY
IN SUPPORT OF UBIQUITOUS DATA ACCESS

By

MICHAEL J. LANHAM

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF ENGINEERING

UNIVERSITY OF FLORIDA, 2002

Approved for Public Release: Distribution Unlimited

Copyright 2002

By

Michael J. Lanham

I dedicate this work and this thesis to my wife, my son, and my family. I also wish to
dedicate this work to the men and women of the United States Army—protectors and
defenders of this great nation.

ACKNOWLEDGMENTS

All thanks that I offer are poor substitutes for the gratitude and appreciation that I owe

to my family, my advisors, my friends, and the United States Army.

With the help of my wife and son, my life remains balanced and fulfilling to a degree I

never dreamed possible. Adding to their support is the love and affection of my family:

mother, father, brother, sister and their families. My family motivates me everyday with

a thrill for life. Long after I depart this earth, my children and my family will remember

what kind of man I was: may I live up to what they deserve.

I wish to thank Dr. Joachim Hammer and Dr. Abdelsalam Helal. Their co-sponsoring

of the Ubiquitous Data Access project has been instrumental in my efforts at securing this

step in my professional life. Their numerous insights, corrections, and guidance are

directly responsible for any success I had in contributing to their project. Finally, I wish

to thank Dr. Joseph Wilson, Jim Hranicky, and Sullivan Beck for their unending patience.

Finally I wish to thank the United States Army. The Army has given, and continues to

give, emotional and job satisfaction that I could only have wished for. I am proud to

have served next to the soldiers and officers of the United States Army. I am pleased the

Army continues to let me fulfill my oath “to protect and defend the Constitution of the

United States of America, against all enemies, foreign and domestic, so help me God.”

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ... iv

LIST OF TABLES... viii

LIST OF FIGURES ... ix

ABSTRACT... xi

1 INTRODUCTION ...1

Motivation... 1
Ubiquitous Data Access Project.. 2
Use Case.. 3

2 UBIQUITOUS DATA ACCESS PROJECT...5

Architectural Overview... 5
Why UbiData Standardized On XML... 8

Content Reduction Defined.. 8
Difference Algorithms versus Value Shipping .. 9

Content Reintegration After Transformations .. 11

3 RELATED RESEARCH ...12

Bandwidth Adaptation .. 13
Puppeteer.. 13
Odyssey.. 14
Alliance .. 14

Traditional Difference Algorithms ... 15
Binary Difference Algorithms .. 16

The Rsync Algorithm and rsync() Program... 16
The Xdelta() Program... 18

XML Specific Algorithms .. 18
Sun Microsystems .. 18
IBM’s XML diff() and merge() and xmltreediff() .. 19
The laDiff() Utility ... 20
The XyDiff() Program Suite ... 20

4 ALGORITHM ANALYSIS AND DESIGN ...22

v

Use Case (Revisited)... 22
Content Customization.. 24

Content Reduction.. 24
Content Conversion.. 26

Meta-Data to Support Content Customization and Structural Similarities................... 27
General ... 27
Intersection Map .. 29
Symmetric Difference Map.. 31

Client-Side Difference Detection.. 31
Imposing a Minimal XML Structure on Text Documents.. 32
XML Difference Detection—verbose-diff (vdiff()) .. 33
XML Difference Application/Patching... 37

5 IMPLEMENTATION AND IMPLEMENTATION HURDLES..................................38

Content Reduction .. 38
Client-Side Difference Detection.. 38
Imposing a Minimal XML Structure on Text Documents.. 39
Algorithm Review... 40
Component Implementations .. 41

ParseAndLabel ... 41
ParseMapFile ... 42
BuildSubTreeLookupTable.. 42
FindAndUseIDAttrs ... 42
TopDownMatchHeaviestTrees .. 43
PeepHoleOptimization ... 43
MarkOldTree and MarkNewTree .. 43
AdjustForUnSharedChildren ... 45
BuildLeastCostEditScriptForWeakMoves... 45
DetectUpdatedNodes ... 45
ConductAttributeOperations .. 46

Peephole Optimization.. 46
Current Implementation ... 46
Two Failed Approaches ... 49

AdjustForUnSharedChildren .. 50
Unsuccessful Approaches .. 52
Current Approach... 53

Conducting Attribute Operations.. 53

6 EXPERIMENTAL RESULTS...56

Test Platform, Equipment, and Methodology... 56
Abiword as Data Generator .. 57
OpenOffice Writer as Data Generator .. 58
Results... 59

Bandwidth Conservation Through Content Conversion.. 59
Bandwidth Conservation Through Client-Side Use of GNU diff()........................ 62

vi

Comparison of vdiff(), XyDiff(), and GNU diff() ... 63

7 FUTURE RESEARCH ..70

Peephole Optimization.. 70
Child Reordering... 71
Optimizations of Current Implementation .. 72

Edit script overhead ... 72
Edit script packaging of old data.. 72

XML to HTML and back.. 73

8 CONCLUSIONS..75

Content Conversion .. 76
Content Reduction .. 76
XML Differencing .. 76

LIST OF REFERENCES...78

BIOGRAPHICAL SKETCH ...82

vii

LIST OF TABLES

Table page

1 Document Version and Description Legend...24

2 Contents of an OpenOffice Document Zip Archive ...26

3 Average Microsoft and Text Document Size..59

4 Average AbiWord and Text Document Size ..60

5 Savings Achieved Through Use of diff() Tools versus Value Shipping.......................63

viii

LIST OF FIGURES

Figure page

1 Conceptual Overview of UbiData System Architecture...5

2 Client Interaction with UbiData Server ..6

3 Bandwidth and Target Device/Application Filtering of Source Documents9

4 Pseudo-Code Algorithm for XyDiff()..21

5 Use Case Overview with a Text-Only Mobile Device ...23

6 Use Case Overview With a Computationally Powerful Mobile Device.......................24

7 Intersection and Symmetric Difference Schema for vdiff() ..29

8 Intersection Map ...31

9 Symmetric Difference Map...31

10 Pseudo-Code Algorithm for vdiff() ...34

11 State Transition Diagram for Text to AbiWord Converter...40

12 Pseudo-Code Algorithm for vdiff() (Revisited) ..41

13 Sub-tree and Hash Lookup Table used for Top-Down Matching...............................42

14 OpenOffice XML Structure of a Document ...44

15 OpenOffice XML Imposed on a Text File..44

16 Pseudo-Code for Peephole Optimization..47

17 Peephole Optimizations of v0 and v1 ...47

18 Simple Child Reordering Problem..50

19 AbiWord XML Document With Unshared Nodes Highlighted51

20 A v1 Document With a Second <Section> Tag..52

ix

21 Testing Methodology for vdiff(), XyDiff(), and diff()..57

22 Comparative File Size for MS-Word Documents and Text Documents60

23 Text Document and Byte Savings as Word Documents Increase in Size...................61

24 Standard Deviation of ASCII Documents Derived From Word Documents..............61

25 File Size for AbiWord Documents and ASCII Text Documents................................62

26 Savings Through diff() on Client versus Value-Shipping Entire File.........................63

27 Cumulative Execution Times for diff(), vdiff(), and XyDiff()64

28 Comparative Execution Time for diff(), vdiff(), XyDiff()..65

29 Delta Script Sizes for diff(), vdiff(), and XyDiff()..66

30 Predicted Performance Versus Actual vdiff() and XyDiff() Performance67

31 User Perceived Errors in v1 Documents Using AbiWord ..69

x

Abstract of Thesis Presented to the Graduate School

of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Engineering

CHANGE DETECTION IN XML DOCUMENTS
OF DIFFERING STRUCTURAL VERBOSITY

IN SUPPORT OF UBIQUITOUS DATA ACCESS

By

Michael J. Lanham

August 2002
Chair: Dr. Joachim Hammer
Department: Computer and Information Sciences and Engineering

Mobile computing used to mean the Osborne 1 personal computer and twenty-four

pounds of electronics in a hard plastic case. The world now has six ounce palm top

computers and personal digital assistants (PDA) with more processing power than ten

Osborne computers. Along with the increasing capabilities of mobile devices come

increasing consumer expectations. People are not content to maintain separate electronic

address lists and calendars on every device they own. Nor are they content to lose edits,

formatting, and time when exporting and importing documents to and from applications

with different formats. These rising expectations and the expanding capabilities of

mobile computing devices intersect in the world of ubiquitous data access. Consumers

want to be able to access and modify the same information on multiple devices, see those

changes on every device, and do so without significant effort.

Through the use of Extensible Markup Language (XML) and intelligent difference

algorithms, these and other mobile devices are within reach of achieving interoperability.

xi

XML provides applications a non-proprietary means of communicating with each other.

Difference algorithms allow devices with limited battery life and inconsistent-quality

network connections to transfer modified data in small pieces. Combining XML with

change detection algorithms may reduce the need for transferring entire files to and from

devices.

This research focuses on customizing current XML difference algorithms. The goal is

to detect differences between two XML files that do not always share the same structure,

though they are directly related through their content. This is the case when a user has

transferred a complex, multi-media document from his/her desktop personal computer to

a palm-top device. The small device is incapable of presenting some of the document’s

contents and has less memory and storage space than the desktop unit. The sending

device can reduce transmission time by removing those contents, and other large

embedded objects, from the data stream. Now that the streamlined version of the

document is on the small device, the user can edit the file using the software on that

device. Transmitting only the changes in this edited file continues our effort to conserve

bandwidth, connection time, and battery-power. Integrating the transmitted changes from

the streamlined document back into the originating complex document becomes a

fundamental requirement and a significant challenge.

Users want their various portable and non-portable devices to be able to share data.

They want modifications made on one device to propagate to other devices they use.

This research is one piece of the ongoing effort to achieve ubiquitous data access.

xii

CHAPTER 1
INTRODUCTION

Motivation

Mobile computing used to mean the Osborne 1 [JON94] and twenty-four pounds of

electronics in a hard plastic case. Now the world has six ounce palm top computers,

personal digital assistants (PDA), and phones with more processing power than ten

Osborn computers. Along with the increasing capabilities of mobile devices come the

increasing expectations of consumers. People are no longer content to maintain three

electronic address lists, two different electronic calendars, and have to work with three

incompatible word processors. These rising expectations and the expanding capabilities

of mobile computing devices intersect in the world of ubiquitous data access. Consumers

want to be able to access and modify the same information on multiple devices, without a

lot of effort. Interoperability of the various software packages on these mobile devices

remains an elusive and unlikely prospect.

Through the use of Extensible Markup Language (XML) [WWW00] and intelligent

use of difference algorithms, these and other mobile devices are within reach of achieving

true interoperability. XML provides an open-standard means of communicating between

applications that would otherwise not share data well. Difference algorithms allow

devices with limited battery life and inconsistent-quality connections to transfer modified

data in small pieces: eliminating the need for multi-minute transmission of data to and

from a device.

1

 2

This presentation focuses on customizing current XML difference algorithms. The

goal is to detect differences between two XML files that do not always share the same

structure. This is the case when a user has transferred a complex, multi-media document

from his1 desktop personal computer to his palm top device. The small device is

incapable of presenting some of the document’s content and has less memory and storage

space than the desktop unit. The sending device can reduce transmission time by

removing those contents, and other large embedded objects, from the data stream. Now

that the streamlined version of the document is on the small device, the user can edit the

file using software on the mobile device. Integrating the changes from this streamlined

document back into the originating complex document is thus a requirement and a

significant challenge.

Users want their various portable and non-portable devices to be able to share data.

They want this sharing to be automatic and with little active intervention. Finally they

want modifications made on one device to propagate to the other devices they use. This

research is one piece of the ongoing effort to achieve ubiquitous data access.

Ubiquitous Data Access Project

The Ubiquitous Data Access Project (UbiData) at the University of Florida is a project

operating under the guidance of Dr. Abdelsalam “Sumi” Helal and Dr. Joachim Hammer.

Their work in [ZHA01, HEL01] states the project’s goals simply while setting a high bar

for expected performance levels. The goals of UbiData are as follows:

• Any time and anywhere access to data. Regardless of the connectivity status
of a user’s device, the user should be able to read and modify the data in his
device. The immediate requirements are three modes of connectivity. The
first is via a high-speed Internet connection. The second mode is weakly

1 Throughout this paper, the terms he, his, etc. refer to an individual who may be male or
female.

 3

connected via a low-bandwidth high latency connection such as wireless
LANs, cell phones, or telephone lines. The third mode is when the device is
disconnected from the surrounding Internet.

• The second primary goal is device independent access to data. Mobile
computing devices vary dramatically in their processing, storage, and display
capabilities. They also vary in the types of operating systems, applications,
and user interfaces they employ. UbiData’s goal is to make all user data on
one device accessible to every other device the user employs. The
transferring of data to and from devices is automatic and invisible to the
user—eliminating the often-torturous series of steps digital warriors use in
today’s state of the art.

• The third UbiData goal is propagating users’ modifications of data on mobile
devices to other mobile and fixed devices through a central data server. The
modification of common data by classes of related applications (e.g. word
processors) is an oft-occurring event. UbiData adds complexity to this event
by propagating only the changes to and from the central data server.
Integrating one application’s changes to a document into another application’s
document is one of the most unique features of UbiData.

Use Case

To illustrate our motivations, let us explore a simple scenario that outlines this vision

of application- and device-independent synchronization. A busy executive is

collaborating on a position paper at his office. His desktop is running a full-fledged word

processor, which he is using to write the paper. Prior to leaving for a trip, our

synchronization system transmits this document to his PDA. The system automatically

strips out pictures, graphs, formatting, and other information that is not usable by the

PDA’s editing application; it transmits nothing but ASCII text. These transformations

speed transmission to the device, minimize storage requirements on the PDA, and still

retain enough information for the executive to proofread and make minor modifications

to the paper.

During his plane travel, the executive has an important thought pertaining to the

position paper. Using the simple text editor on his PDA, he updates the document. When

 4

connecting to the company e-mail server in the evening, the PDA’s synchronization

client also transmits the changes to the document to the central warehouse server for

synchronization with the master copy. The amount of data transmitted is a small text-

based edit script of a few dozen bytes: minimizing transmission time and facilitating

propagation of the changes to other copies of the document. Once the text-based edit

script reaches the central server, it gets transformed into intermediate forms of XML and

our special XML difference algorithms start their work. This integration of text-only

changes back into a full-fledged word processing document is not currently possible with

commercial products or research prototype systems.

CHAPTER 2
UBIQUITOUS DATA ACCESS PROJECT

Architectural Overview

The UbiData infrastructure consists of several major pieces. Figure 1 shows a

conceptual overview of UbiData. On the right side of the figure are the data sources.

Data sources may or may not belong to the users who access the UbiData project’s

servers. On the left side are the UbiData clients. Each client can publish data to the

UbiData server and hence become a data source in addition to being a client. The

components in the middle form the UbiData server itself.

Mobile
Node

M
-M

EM

Mobile
Cache /
Local FS Event

Detection

Rule
Engine

F-MEM
Event
Data

Event

Data

Working
Sets

Rules /
Events

Meta-Data

Catalog

CODA File System

Data
Warehouse

Manager

Data Request (Action)

Event
Specification

Interface

Rule
Specification

Interface

Administrator /
Expert User

External Data Sources

Data

Request

External Event / Update

Mobile
Node

M
-M

EM

Mobile
Cache /
Local FS

Figure 1 Conceptual Overview of UbiData System Architecture

5

6

The system stores not only published data from the sources but also meta-data

regarding the contents, type of file, and other critical information. The repository helps

maintain consistency levels between the various clients and the data sources using

programmable rules. Bringing a client into a consistent state with the UbiData server is

automatic and does not require user initiation. Bringing the UbiData server into a

consistent state with the data source is also automated: a key factor is whether the data

source can send incremental updates to the UbiData server. If the answer is no, our

system reverts to value-based hoarding and shipping. Another purpose of the UbiData

server is to allow users to set different consistency requirements for their different

devices, easing communications requirements on non-critical devices.

The more detailed information depicted in Figure 2 shows the interactions between the

UbiData Warehouse Server and the clients.

Event
Detection

Rule
Engine

F-MEM

Data Request (Action)

Middleware / MDSS
Events

Meta-Data

Database
(dbXML, Oracle, other)

Working
Set List

Meta-Data
per file / per app

Rules /
Events

User Profiles

Middleware File System
CODA (?)

Mobile
Node

M
-M

E
M

MH

MS-Word

XML
message

queue

Mobile
Cache /
Local FS

Data (subsumed by Meta-Data?)

Catalog

Figure 2 Client Interaction with UbiData Server

7

We now focus on the synchronization architecture in more detail. The Mobile

Environment Manager (MEM) has two primary components: M-MEM and F-MEM

(Mobile and Fixed respectively). MEM provides the smart filtering algorithms and

communications links between clients and the UbiData Warehouse Server [ZHA01].

Underneath F-MEM on the UbiData server is the meta-data database that tracks the

users’ working sets, has default rules for device capabilities and filters to employ, and has

default conversion rules and tools for moving data between different formats. The

database also maintains the links to the actual data files that users have placed in the

UbiData server.

The client’s M-MEM modules maintain contact with the UbiData server or, upon

reconnection to a network, establish connection to UbiData. Along with the initial

communication setup, M-MEM identifies its version number, OS type, and device type.

M-MEM also transfers the records it has captured during connected and disconnected

states: interesting file activities that add to the user’s working set, changes in users’

desired consistency levels, etc. F-MEM receives these records and proceeds to process

them. For files not accessed within a set amount of time, F-MEM and the database drop

the file from the working set. For active files, F-MEM receives either entire files or

differential updates from the clients. Likewise, when a client first requests (either

actively or through an access miss on the client) a file, F-MEM sends the entire file to the

mobile device (possibly with intermediate processing).

When M-MEM reports a file access miss on the client, F-MEM must send the file to

the client. It must transform the document into a format usable by the client device.

Default rules exist for conversion of files being shipped to certain types of devices. The

8

user has the option of specifying additional restrictions on the quantity and type of data to

ship: allowing not only a network connection adaptation but also a user patience-

threshold adaptation.

Why UbiData Standardized On XML

A principle requirement for cross-application accessibility of data is the ability to

transform the original data into a format expected by another application. One way of

accomplishing this is to take advantage of the export filters provided by many

applications. Using these filters, users may manually export or import a document into

formats supported by the application. We wanted UbiData to conduct these conversions

automatically and without mandatory user intervention.

We chose Extensible Markup Language (XML) to facilitate these automated and

automatic conversions. This choice provides several advantages shown below and in

following sections:

• No reliance on proprietary data formats;

• Leveraging the growing influence of XML and using other developer’s conversion
products for proprietary-format-to-XML and back transformations;

• Leveraging the automation capabilities of Extensible Stylesheet Language (XSL)
[WWW01] to standardize transformations of the XML data to various proprietary and
non-proprietary formats.

Content Reduction Defined

XML has another advantage when trying to adapt data streams to poor network

connections between devices. The anytime, anywhere data access goal of UbiData

requires that the server can intelligently adapt to the quality of its Internet connection

with the mobile device. UbiData achieves this by transforming XML documents into

stripped down versions. It accomplishes this by building an XML document composed

9

of nodes that do not require large amounts of bandwidth and time to download. Elements

that surround pictures, graphics, or other large embedded objects simply do not go to the

mobile device. Discovering the location of these objects in the document is difficult with

proprietary data formats. Since XML is an open-standard encoding scheme, it becomes

less difficult and much less likely to violate of emerging legal restrictions on reverse

engineering. Figure 3 shows the conceptual view of how the UbiData server incorporates

this adaptation scheme into the event flow of communications with a mobile client.

Laptop
Mobile Device

M-Mem

Specific
Format

Document
Publish Document

Limited Content Doc

Request for import
including Target
App

Target App Sensor

Avail Bandwidth
Sensor

XML Encoded
Data

UbiData Server

F-M
em

Application and B/W
filtered XML / Target App

document

Palm
Mobile Device

M-Mem

Specific Format Doc

XML Converter

XSLT Convertor
Custom Splitter

Target App
Conversion Rules

Figure 3 Bandwidth and Target Device/Application Filtering of Source Documents

Difference Algorithms versus Value Shipping

UbiData uses difference algorithms to minimize the amount of data transmitted

between the mobile devices and the server. Mobile devices generally have limited

battery life. Every transmission of data requires more energy expenditure than

transmitting nothing. UbiData wants to minimize the quantity of data transmitted

10

between devices. Such minimization helps extend the life of the battery in mobile

devices. It also has the potential benefit of dramatically reducing transmission times.

Difference detection algorithms are not new in the computer science realm. XML

difference detection tools are not as mature as older text-based tools, but they are usable

and benefit from thirty years of research on difference algorithms in general. A principal

advantage to XML difference detection tools over their text-based brethren is XML tools

can (but don’t always) very efficiently support move semantics. They also take

advantage of XML’s hierarchical structure. Traditional tools are not even aware of the

hierarchal structure of the XML file, so certainly take no advantage of it. Another

justification for using XML based change detection tools is that XML documents have no

requirement for line breaks between nodes. In OpenOffice’s StarWriter, the content

document has two lines: the XML declaration line, and the entire document in a many

thousand-character line. To capture minor changes inside the XML file, traditional line-

break oriented difference detection tools must report the entire second line as changed.

This can generate edit scripts with no savings in size with respect to the size of the

original document and indeed can by almost twice the size of the original file.

Value shipping offers none of the advantages or capabilities listed above. The

simplicity of shipping entire files from one device to another is almost impossible to beat

when it comes to implementation. Even consistency checks with value shipping become

relatively easy: the user or system picks which of the conflicting files they will keep.

Despite these advantages, value shipping demands more transmission time, fails to

provide an adaptation capability due to network or patience-threshold considerations, and

does not lend itself to space-efficient versioning.

11

Content Reintegration After Transformations

The final advantage that XML gives the UbiData project is the ability to integrate

changes from different applications (different but within the same domain: i.e. word

processing) into the original XML document. Current XML change detection techniques

can successfully find changes between the stripped down document the server sent to a

mobile device and the user’s changed document. They cannot then apply that knowledge

to the original, non-transformed XML document. To meet the promise of UbiData, our

system not only allows reintegration of changed stripped documents, it is built around the

requirement.

Our system allows the editing of an AbiWord or StarWriter document in a text editor

and having the changes incorporated back into the original XML document. It also

allows an impatient user of a laptop that runs StarWriter, the option of omitting pictures

and graphics from the data file. With that directive, he receives from the UbiData server

the document’s contents minus the bandwidth-hungry components that increase

download times.

CHAPTER 3
RELATED RESEARCH

The research described here is part of an overall effort to build the infrastructure to

support device independent mobile computing. Other device-independent computing

efforts are underway at Stanford [AHM95], DARPA [SCH01], IBM [IBM02b], and at

Texas A&M [LI02]. The review in this chapter is broken into four major sections that

intermesh with UbiData’s goals: bandwidth adaptation; traditional text-based difference

detection; byte based difference detection; and hierarchically structured (XML) data

difference detection.

Bandwidth adaptation is clearly a related topic that encourages and enables different

devices to connect to the Internet. In our particular vision, we use static adaptation on the

server side of the client/server relationship. Client side adaptation and dynamic

adaptation are both providing insights into our approach.

Change detection is fundamental to incremental transmission of data to and from

devices. The initial architecture of the UbiData System uses byte based change detection.

We have already determined that text-based change detection is not directly helpful, but

there are interesting lessons to learn from it. Finally, we use lessons learned by others

when attempting to do change detection on hierarchically structured and semi-structured

data (like XML).

12

13

Bandwidth Adaptation

Puppeteer

The Puppeteer [DEL01a] project at Rice University is closest to our vision of a system

that supports ubiquitous computing without modifying the user’s applications.

That system focuses on overcoming three obstacles to editing documents on mobile

devices. These obstacles are download latencies, the potential for large updates, and

update conflicts. To overcome these three obstacles Puppeteer used a combined

architecture call CoFi (Consistency and Fidelity) [DEL01b] that supports editing of low-

fidelity components of documents.

CoFi, as a sub-component of Puppeteer, supports two classes of fidelity: full and

partial. Full fidelity means a data file has all the content created by the original

application. All text, embedded pictures, graphics, and other content rich data is present

and available for viewing and editing. The second mode is partial fidelity. This mode

means a data file has undergone a lossy transformation from full content to a degraded

version. The transformations use public Microsoft APIs to parse original MS Office

documents. The parsing breaks documents into Common Object Model (COM) [BRO95]

and Object Linking and Embedding (OLE) [CHA95] based objects and places those

objects into a Document Object Model (DOM). Once in the DOM, their system uses

information about the state of the network to transmit the entire tree or just pieces of the

tree.

The mobile device’s MS Office applications then manipulate the data as usual.

Puppeteer also is beginning the process of allowing edits to the low-fidelity components

on a mobile device and integrating those changes into the high-fidelity version. Puppeteer

does not yet have the cross-application design goal that we are attempting to implement.

14

Odyssey

Another line of research in bandwidth adaptation is the Odyssey project [NOB97].

Odyssey also adapts application data to the current state of the network connection.

Odyssey has two primary responsibilities to assist it in meeting the demands of

application aware bandwidth adaptability. The first is awareness of shared access to

remote data. The second responsibility is application and data type specific—the system

must have enough information about the data stream to modify it in an advantageous

manner. The system fulfills these responsibilities by utilizing three components:

viceroys, wardens, and kernel modifications.

Wardens are components that are specific to each data type. It is a system level

component and serves to encapsulate the functionality required to adapt each specific

data type. If a data stream consists of motion video, the warden contains the methods and

functions to adapt the video stream based on input from the viceroy. The viceroy is a

type-independent component that serves as a resource monitor and controller. When

resource levels fall outside defined limits, the viceroy informs the application. The

application then downgrades its expected fidelity or increases its fidelity demands.

Unlike Puppeteer, Odyssey generally requires modifications to applications to support

its implementation scheme. The exception is when an application can use proxy servers

that Odyssey can then control. This is in contrast to Puppeteer, which uses public APIs of

applications to manipulate that application’s data files. It is also in contrast to our own

system, which utilizes a common format for supported applications: XML.

Alliance

Alliance [DEC95] is a project that focuses on collaborative editing across loosely

coupled computing devices. Its design goals are somewhat similar to UbiData. Its intent

15

is to allow multiple versions of a document to exist on many different devices at once. It

uses user roles to help manage the views of the data; each user may see some or all parts

of any given document depending on their role with respect to that document. Managers

see entire documents while writers see the chapters they work on. The similarity with

UbiData lies in the presenting different views to the users on different devices.

One primary difference is that Alliance implemented single writer consistency

protection. At any given point, of all users who have the potential to be a writer to the

central document, only one user can assume the effective role of writer. Such a system

does not allow for disconnected writes such as UbiData envisions. Without the ability to

write to the document in disconnected mode, Alliance primarily serves as a model for

how to deliver different versions of a document to mobile users.

Traditional Difference Algorithms

Simply stated, the purpose of a difference algorithm is to find the differences between

two files. It then must represent those changes in as efficient manner as possible. This

representation is an edit script. The script describes the edits required of one document to

turn it into the other. Each of the edit script’s operations (insert and delete) has a relative

cost to it. The efficiency of the script is with respect to the sum of those relative costs.

The lower the sum, the better the algorithm in terms of finding the least cost edit distance

between the original file and the updated file [MEY86].

One of the oldest and most straightforward ways of detecting changes between two

files is simple line-by-line iteration through both files. This iteration searches for the first

line where the files differ, then searches forward for matches. While the method works, it

often represents the differences in a non-optimal way. The edit script incurs costs higher

than more intelligent algorithms and is known to be effective, but non-optimal [MEY86].

16

More recent algorithms such as GNU’s diff() still derive from work that originated in

the 1970s and 1980s. These processes generally performed their operations with

complexity of O(n2) with n the size of the initial input. In [MEY86] the speed of the

process was improved from O(N2) to O(ND), where N is the length of the first input and

D is the length of the second input. In the pathological case, the size of the second input

can be equal to or greater than the first. In such cases, the complexity reverts to O(n2).

GNU’s diff() is capable of treating two files as binary data. The documentation for the

program is unclear how it breaks the file into small chunks. It may in fact continue to use

end of line character sequences to break the file into lines of characters. An alternative to

relying on those characters as the delimiter is to conduct the difference at the byte level.

Conducting change detection at the byte level of granularity is apt to yield better

results when dealing with binary data files (as opposed to text data files). The

disadvantage of dealing at the byte level for this type of operation is the increased amount

of computing cycles needed to perform the operation. At least one tool that conducts

binary difference detection uses a more robust way of breaking the files into chunks than

diff() does.

Binary Difference Algorithms

The Rsync Algorithm and rsync() Program

An algorithm called rsync [TRI96], and a program by the same name, uses a multi-

pass scheme to reduce the amount of computations needed by a byte-for-byte comparison

algorithm. The algorithm allows change detection of two files on two different machines.

A good starting place for such a problem would seem to be ensuring each computer

system maintains a copy of the original file as a baseline by which GNU diff() can occur.

However, rsync() starts with the assumption that both computer systems has two sets of

17

data. The user directing the change detection knows there is some relationship between

these two sets of data, but is not sure what the changes are.

The algorithm is elegant in its simplicity and accuracy. Given two computers that each

have a file related to the other, the algorithm proceeds as follows. For the sake of

discussion, we assume the client has a modified version of a document and the server

must retrieve an updated copy of the same file. The server proceeds to break its copy of

the file into a series of non-overlapping chunks of some fixed size, S. It then calculates

two checksums against each of these chunks: a 32-bit and a 128-bit MD4 checksum. The

server then packages and sends those checksums to the client. The client then searches

its file for all blocks of length S at any offset from the beginning of the file. For every

possible match with the 32-bit checksum, it is confirmed or denied using the 128-bit

checksum. The client then sends a sequence of instructions and data back to the server

that allows the server to build a new copy of the file.

This algorithm is very good at computing the differences between two related files on

separate systems: a goal of UbiData. However, the real similarity between the

implementation of vdiff() discussed in this thesis and rsync() lies in its computation of

unique markers for chunks of data. The rsync() program cannot support cross application

change detection as vdiff() does unless each application reads the same type of data file.

It also fails to take advantage of any structural information embedded within the file and

thus looses the benefits and insights that structure can provide a change detection

algorithm. The XML files that this implementation uses are already broken into chunks.

The chunks of an XML file are the individual nodes and sub-trees anywhere within the

XML document’s DOM tree. The vdiff() program uses the unique tag lessons of rsync()

18

in developing unique hash values for each node plus unique hash values for each sub-

tree.

The Xdelta() Program

The Ubiquitous Data Access Project at University of Florida [HEL01] is currently

using Xdelta() [MAC00] as its means of change detection and versioning for documents

under the system’s control. The Xdelta() File System uses a copy/insert methodology to

build its edit scripts. This stands in contrast to standard GNU diff() that uses insert/delete

operations. A simple example is the insert/delete script for “smart computer” being

transformed to “computer smart”. This insert/delete script would require six deletes and

six inserts. A copy/insert would require three instructions: copy “smart,” insert a space,

and copy “computer.”

The vdiff() implementation use some of the lessons generated from XyDiff() by not

limiting itself to single character inserts and deletes. Though we use insert and delete

operations we also support move and update operations. Here a move operation would

be equivalent to the copy operation used in XyDiff(). UbiData also discovered that

XyDiff() is not suited to our goal of cross-application difference detection and

propagation. Trying to reach the goal of cross-application propagation has forced us to

use some common intermediate format for our canonical representation of the data.

Those realizations lead us to the utilization of XML encoding of data and XML specific

change detection algorithms.

XML Specific Algorithms

Sun Microsystems

SUN Microsystems published a XML change detection tool [WAL00] that utilizes

Perl as the implementation language. It uses the longest common subsequence algorithm

19

to find the similar sections of two XML files. The program then proceeds to build an

XML edit script that a user may review. The tool provides an XSLT script how-to to

allow viewing of the edit script within a browser to see the file differences. The tool does

not allow accept/reject options to the changes such as those provided by Microsoft

Word’s Track Changes Option. The program also assumes the absence of XML data

across files is always meaningful (like most change detection methods, it defaults to

ignoring white space when executing the difference detection). As far as we can

determine, there is no easy method available within Perl to modify its Algorithm::Diff()

module to ignore certain types of missing XML data.

IBM’s XML diff() and merge() and xmltreediff()

IBM has devoted a great deal of resources to expanding usage of Java and XML into

its core technologies. As part of that effort they opened and continue to maintain a web

site called AlphaWorks [IBM02a]. The site showcases development examples of its

programming staff. One of those projects is the XML Diff() and Merge() tool. It is Java

based and utilizes the IBM version of the Xerces-Java XML parser version 1.4. It also

supports a GUI to allow a user accept or reject changes between two different XML

documents. Unfortunately the source code for this tool is not available for editing and

modifications. IBM has also built a Java-beans based xmltreediff() [POO99] program

that provides both GUI and command-line interfaces. It also has published APIs that

allow programmatic access. Unfortunately like diffmk(), and XML Diff() and Merge(),

this tool will also fail to meet out requirements in UbiData. We require that the absence

of data in a document on a client not be treated as a delete unless the client shares that

structure with the document on the server.

20

The laDiff() Utility

The vdiff() tool adopts an implementation method very close to laDiff() [CHA96].

However, laDiff() does not assume the existence of external identifiers or even unique

identifiers to assist in the matching of nodes from one document to another. Without the

external IDs, laDiff() sacrifices the ability to conduct versioning of the documents. The

analytical bound of laDiff() shows a O(ne+e2) with e the weighted edit distance and n

equal the number of nodes. However, empirical testing of the routine showed near-linear

time with sporadic, but wide variance.

The XyDiff() Program Suite

The VERSO Team, from INRIA, Rocquencourt, France wrote this tool for their

Xyleme Project [COB02, MAR01]. Their tool executes XML difference detection in

near-linear time to the size of the documents. This tool has the original name of XyDiff()

[COB02] and now has the name verbose-diff() (vdiff()): accounting for documents’

differing levels of structural verbosity and content. XyDiff() expanded on the capabilities

of other XML tools by incorporating the ability to capture move and update semantics.

Like laDiff(), XyDiff() is one of the few XML tools to utilize the move semantic for edit

scripts. This takes advantage of the hierarchical nature of XML and allows movements of

an entire sub-tree to new locations with a single entry in a edit script.

The original XyDiff() algorithm utilizes external identifiers (Xyleme IDs)[MAR01] to

permanently identify each node in the original (v0) XML document. These identifiers

correlate to a post-order traversal of the DOM tree created by parsing the XML

document. This post-order traversal follows the convention used by [SHA89] in tree-to-

tree correction problems. The XIDs are crucial to the versioning capabilities of XyDiff()

21

and to our modifications. The remainder of their algorithm is shown below and worth

noting prior to exploring the vdiff() algorithm.

v0DOM = ParseAndLabel (v0document, isSource);
v1DOM = ParseAndLabel (v1document, isNotSource);
BuildSubTreeLookupTable (v0DOM);
FindAndUseIDAttrs (v0DOM);
TopDownMatchHeaviestTrees (v1DOM);
PeepHoleOptimization (v0DOM); //force matches if reasonably safe
MarkOldTree (v0DOM);
MarkNewTree (v1DOM);
BuildLeastCostEditScriptForWeakMoves (v0DOM, v1DOM);
DetectUpdatedNodes (v1DOM, v0DOM);
ConductAttributeOperations (v1DOM, v0DOM);
WriteXIDmapFile (v1DOM);
WriteDiffInfoToFile ();

Figure 4 Pseudo-Code Algorithm for XyDiff()

The VERSO team discovered through empirical testing that this algorithm operates at

near linear speed on documents up to 10 megabytes in size [COB02]. Further discussion

of the algorithm remains for a later section. The INRIA team, specifically Gregory

Cobéna, has provided numerous insights into their code to assist in the modifications that

formed vdiff().

CHAPTER 4
ALGORITHM ANALYSIS AND DESIGN

Use Case (Revisited)

The mobile client in the use case is a personal digital assistant (PDA) that is not

capable of rendering complex documents and their content. Our executive has been

working on an AbiWord generated document on a device not pictured below in Figure 5.

The server has placed the document into the user’s working set and has a copy stored on

its own storage device. When the PDA connects to the server, the server updates the

PDA with the contents of files not previously in the working set and therefore not on the

PDA. In our case, the server initiates an automatic conversion from AbiWord’s XML

format to a text-only format suited to the small storage and display capacities of the PDA.

It then transmits the data to the client via communications handled by F-MEM and M-

MEM.

The executive re-reads his document on the PDA for proofreading purposes. He

makes several spelling corrections, grammar corrections, and repositions several

paragraphs. When he finishes, M-MEM uses GNU diff() to compute the changes to the

document. M-MEM then packages those changes and awaits another opportunity to

transfer the data to F-MEM.

When F-MEM receives the message with the edit script embedded in it, the server

then applies the edit to the text-only document it kept. The work in this thesis did not

integrate M-MEM and F-MEM with GNU diff() and GNU patch(). Manual execution of

those commands is the current simulation technique we employ. We now delve into a

22

23

deeper explanation of each of the intermediate steps we take to reach own end-state: an

XML encoded edit script describing the changes the user made on the palm that can be

incorporated into the original document.

The conceptual overview of the algorithm needed to implement our vision of UbiData,

as needed by our use case, is show in Figure 5. It is important to note that for mobile

devices with too little computing power to support vdiff(), the system requires two

iterations of change detection: once with GNU diff() on the mobile client and once with

vdiff()on the server. Figure 3 shows the sequence of operations for a mobile device that

can support vdiff(). Only one round of change detection occurs: on the client. The client

then ships the edit script back to the UbiData server for propagation to the master copy of

the document.

UbiData Server

F-M
em

Mobile Device

M
-M

em

Text Document ver 0(-)

AbiWord XML to
Text Converter

Text Doc ver 0(-)

Text Doc ver 1(-)

Text diff util

AbiWord Generated
XML Doc ver 0

Text Document

Text diff script patch util

Text (ver 1(-)’) to
AbiWord XML(-)

Converter

XML vdiff util

XML delta script

XML deltaApply util

AbiWord XML
Doc ver 1 XML delta script

Figure 5 Use Case Overview with a Text-Only Mobile Device

24

UbiData Server
F-M

em

Mobile Device

M
-M

em Reduced XML

AbiWord XML
Content Reduction

XML Doc ver 0(-)

XML Doc ver 1(-)

XML vdiff util

AbiWord Generated
XML Doc ver 0Reduced XML

Content Document

XML diff script

XML deltaApply util

AbiWord XML Doc
ver 1 XML delta script

 2 May 2002 15 of 46
Figure 6 Use Case Overview With a Computationally Powerful Mobile Device

The information in Table 1 helps clarify the various version numbers in Figure 5 and

Figure 6.

Table 1 Document Version and Description Legend
Version Description Version Description

v0 Rich Content, XML Doc v1(-) Changed version of v0(-)
v0(-) Reduced Content and/or

transformed version of v0
v1(-)’ If required, v1(-) with XML

structure imposed
 v1 V0 with modifications from v1(-)

Content Customization

Content Reduction

Content reduction is the process by which the UbiData System will deliberately

remove bandwidth hungry objects from a data stream. The automated functionality

allows for the system to use intelligent defaults when faced with less-than-optimal

connectivity to the requesting computing device. The other benefit of having this feature

is the user does not need to know precisely what elements of a document his device’s

applications can use. Additionally, when the user overrides the system and specifies

25

removal when none would normally occur, the user chooses to save time over data

content.

Both AbiWord and OpenOffice use XML as their data encoding method. This makes

the task, if not trivial, a matter of pure mechanics instead of theoretical science. This

capability is not yet implemented in UbiData. No predictions exist on the ease of

building the mechanisms to strip bandwidth hungry objects from these two, and other,

XML data streams. After all, repairing a lawnmower’s engine may not be theoretically

difficult, but many a shade tree mechanic has ruined their mower with under estimations

of the skills required. Puppeteer has proven this content reduction is feasible and

executable in MS Office Documents [DEL01a]. It now remains a matter for execution

within the realm of OpenOffice and AbiWord as test document generators.

After such a grim introduction, let us probe the specifics of the tasks for content

reduction. Analysis of AbiWord documents and OpenOffice documents show they both

use specialized tags to hold both meta-data and the actual content of objects such as

pictures, OLE objects, and graphics. The tags for both to encode the presence of a

picture is <image>, and of tables <table>. When the XSL-driven or custom-converter

encounter’s such tags, the tag gets skipped, replaced with a placeholder, or uses another

technique to help reduce the transmission time. This is a static adaptation to the network

connection between the UbiData Server and the mobile device. There are currently no

plans to dynamically change the quantity of data shipped to a client in the event a

network connection dramatically improves during transmission.

AbiWord embeds pictures’ actual binary data in the overall document. In OpenOffice,

the content file’s <image> tag has an href attribute that points the application to another

26

file. At this point it is worth a small digression to discuss the content structure of an

OpenOffice file.

OpenOffice uses XML as its encoding for all documents that it creates: word

processing, spreadsheet, and presentation. It stores the content into a zip archive with the

name provided by the user. A typical zip archive expands to look like that shown in the.

Table 2 Contents of an OpenOffice Document Zip Archive
File Name Description

Pictures/07314EC41FE.wmf Embedded picture in native format
Pictures/0B21A10A201.jpg Embedded picture in native format
Pictures/07369586D1F.wmf Embedded picture in native format
layout-cache Binary file
styles.xml Text formatting styles
Settings.xml Application settings at time of save
Content.xml Text content of document, spreadsheet, etc.
meta.xml Document author name, other meta data
META-INF/manifest.xml Listing of expected contents of zip archive

XML <image> tags use attributes specify whether to activate the link upon load or

other times. Such cleanly delineated markers will greatly simplify the removal of these

objects from the transmission stream. Those markers stand in stark contrast to locating

data with a proprietary data format. Cleanly removing content from data files created by

OLE or COM enabled applications becomes significantly more of a challenge in a

heterogeneous environment.

Content Conversion

This implementation uses custom C++ code and open source software to create the

first generation converters for the UbiData system. Conversion of the XML documents

created by AbiWord and OpenOffice to ASCII format text files proved a matter of

mechanics. As the complexity of the XML documents involved with the test cases rises,

it is possible that the current tools will need modification.

27

Our conversion utilized the Xerces-C++ XML parser from Apache.org [APA02b] plus

custom C++ code to isolate and print appropriate nodes. Future conversions may

continue using this approach, but work is proceeding on utilizing XSL and the Xalan

XSLT [APA02a] processor (again from Apache.org). It is apparent that UbiData will

have to have an XSL style sheet or custom converter for every application we intend to

support. One may argue that it is simpler to utilize an application’s built-in export feature

often suffices for the transformation to other formats—no built-in converters we are

aware of is capable of omitting selected structures of the document. Such omission is

what allows UbiData to adapt to network connectivity status or user patience.

The conversion process generates text that not attempt to recreate positioning of text

(i.e. centered, right margined, justified) nor does it contain any formatting other than new

lines, form feeds (when applicable), and tabs. This first step, and further conversions and

manipulations of test documents are shown in Figure 5.

Meta-Data to Support Content Customization and Structural Similarities

We discuss the concept and actual implementation of content customization. What we

have not discussed so far is if or how we would track this customization. Indeed it is not

a question of if we track the data. Without knowledge of what UbiData does not include

in its document transformation, the system has little hope of being able to integrate a

user’s changes back into the original document. In the following sections we use the

terms v0 document and v1 document to mean the original document served by the

UbiData and the modified document residing on the mobile client.

General

The v0 document contains a significant amount of data and meta-data never converted

to text and utterly useless to a text editor (hence the reason it was not converted in the

28

first place). This data, in the case of AbiWord and OpenOffice, contains style

information, page definitions, dictionary data, and other information the application

embeds in the data file and data archive. Other XML change detection tools [IBM02a,

CHA96, WAL00] will interpret the absence this data in the modified document (v1) as

deletion of the corresponding nodes. If those delete actions propagate to the v0 document,

it is immediately apparent that the v0 document will become corrupted and possibly

unusable to the application.

Tracking what structures two XML documents have in common, or alternatively do

not have in common, is fundamental to vdiff()’s approach. Without this information, no

roundtrip is possible between a transformed and edited document back to the originating

document. To accomplish this tracking we rely on piece of externally stored data. We

created a XML schema that defines an intersection or symmetric difference map file. The

map lists the originating application of the v0 document (e.g. AbiWord) and the target

format of the transformed v1 document (e.g. text).

The schema then allows for a tag-by-tag enumeration of shared and aliased tags or a

tag-by-tag enumeration of unshared tags and unshared attributes. The ability to list only

the intersection of identical tags between XML formats prevents having to enumerate

every possible tag name in the domain of the v0 document. The alternative is to list only

the unshared nodes (the symmetric difference) between two XML documents. Figure 7

shows the vdiff() schema, as generated via XMLSpy with the intersection element

expanded while Fig and Fig graphically represent overlapping tag sets and symmetric

difference tag sets.

29

source

result

vdiff

+symmetric_difference

shared_attrshared_attrs

aliased_attrs aliased_attr

default_attrs default_attr

name=""

from_attr=""

to_attr=""

value=""

name=""

0..oo

0..oo

0..oo

shared_tagshared_tags

1..oo

shared_attrshared_attrs

aliased_attrs aliased_attr

default_attrs default_attr

name=""

from_attr=""

to_attr=""

value=""

name=""

name=""

to_name=""

from_name=""

0..oo

0..oo

0..oo

aliased_tags aliased_tag

1..oo

intersection

name=""

to_name=""

from_name=""

Figure 7 Intersection and Symmetric Difference Schema for vdiff()

Intersection Map

The intersection of tag names between the v0 and v1 documents is essential

knowledge. In the absence of this map file, the algorithm assumes that both documents

have a complete overlap in allowed element tags. As such, the program treats all data

within the XML files as meaningful. When this map file exists, the program gets to

perform extra processing to determine if absence of data in v1 corresponds to intentional

delete actions by the user.

It is worth noting the existence of the <default_attr> child element of both the

<shared_tag> and the <aliased_tag>. The capability to embed default values for tags

becomes essential in the test cases we cover later. When we detect changes between the

30

minimalist XML structure (v1 document) against the v0 document, the <p>aragraph tags

do not have attributes. Eventually the program determines some <p> tags are insert

actions, and it uses the default attribute values when inserting the <p> tag into the edit

script. If this inference of default attribute values did not happen, AbiWord will not

function correctly. More accurately, the program will not render a paragraph without

attributes. To the AbiWord user, it will appear that the text he inserted on the PDA did

not make it back to his desktop AbiWord. In actual fact, the paragraph and its child

nodes do exist in the document: the application simply does not render then in a visible

manner.

We provide the infrastructure to list aliased tags for future expansion of the system.

The most likely scenario for this expansion is transforming XML documents on the

UbiData server into HTML. The intent would be to allow the users of the mobile devices

to edit the HTML file with no knowledge that it derives from structured XML. Since

HTML has a more limited set of possible tag names, it is likely that multiple XML tags

will map to a single HTML tag. Knowing this information will assist reconstruction of

the XML document from the modified HTML file.

In Figure 7 we can see that our intersection map will include the shared tag labeled 3

and n. The vdiff() generated scripts will not delete from the v0 document any tags that do

not have these two labels.

31

v0 Document

Tag 1

Tag 4

v1 Document

Tag 2

Tag n

Tag 3

Tag 5

Figure 8 Intersection Map

v0 Document

Tag 1

v1 Document
Tag 2

Tag n+1

Tag n

Tag 3

Tag 4

Figure 9 Symmetric Difference Map

Symmetric Difference Map

The Symmetric difference is easily identified by the enumeration of the tag names the

two documents do not have in common. This can save an enormous amount of work

when both documents have a very large tag set. In Figure 9 we can see that the

Symmetric Difference Map will include only the tags labeled 3 and 1. Vdiff() generated

scripts will not delete any tags from v0 that have the labels of 1 or 3. It is also possible,

though no example is readily available, for two documents to share a common tag name,

but not all of that tag’s attributes. This is why the symmetric difference allows for listing

unshared attributes. Of necessity, the two documents must share the element name and

then enumerate all the unshared attributes.

The reader should note that the v1 document tag cannot exceed the boundaries of the

v0 tag set. If this happened, then the changes sought by v1 would definitely render the

patched v0 document invalid against its DTD or schema.

Client-Side Difference Detection

As shown in Figure 5, the current version (n) of a text-only document propagates to

the mobile device by a user-specified hoard directive. The file may also get sent to the

32

PDA automatically due to its presence in the user’s working set. Once the document is

on the mobile device the user can read and write the data, making changes as needed.

Upon a file-close event, the M-MEM module uses an incarnation of GNU’s diff()

[FSF02b] to process the differences between the downloaded text file and the modified

text file. M-MEM then packages this edit script and sends it to F-MEM. The integration

of M-MEM with GNU diff() is not currently in-place for PDA devices, but on laptop’s

the integration is complete using Xdelta [MAC00]. For now we simply simulate the

integration by calling diff() ourselves.

F-MEM applies this edit script to the copy of the text-only file originally sent to the

client. This automated patching is currently simulated by direct intervention. The GNU

patch() utility modifies the text document remaining on the server, converting it to

version n+1.

Imposing a Minimal XML Structure on Text Documents

A change detection algorithm between unstructured text and a structured XML

document is extremely unlikely to produce any meaningful information. It is apparent

that the system must express the modified n+1 document in XML format. It is also

apparent that it is impossible to impose a full-fledged structure upon the text-only

document—we have no information by which to judge what sections of the text belong to

what structures in a verbose XML document. At this point, a special tool created using

flex [FSF02a] and C++ imposes a minimal XML structure upon the text document. This

imposition is specific to the class of XML document we are trying to compare the text to.

This minimal structure is a result of analysis of AbiWord and OpenOffice documents and

has minimal tag sets that it employs.

33

Briefly, the flex-generated tool starts the creation of an XML file with the XML

declaration, and the first two elements: <abiword><section>. It uses several simple states

to determine when to close and reopen <section> tags, open and close <p><c> </c></p>

tag pairs for paragraphs, <c> </c> tags for tabs, and<p/> tags for empty lines. This

example is highly specific to AbiWord. The example also shows how this system will

require customization for each XML-to-specified-format transformation we want to

support. Similarly, we need, and have, a converter to impose a primitive OpenOffice

structure upon text documents. The primitive OpenOffice tag set is even smaller with

only <document_content>, <text:p>, <text:s> currently in use. Conversion of special

characters like &, “, ‘, < and > into XML entities also happens during this imposition of

structure.

XML Difference Detection—verbose-diff (vdiff())

We continue to use the XIDs (renamed eXternal IDs [aka XIDs]) of the XyDiff() tool

to provide permanent identifiers for every node in the v0 document. The pseudo-code

below in Figure 10 provides the top-most level of the vdiff() algorithm and assumes three

arguments are provided by the invocation, the name of the v0 document, the name of the

v1 document, and the name of the map file describing structural similarities or

differences. In the code, the v0 document is the originating document (usually full-

content and full-structure XML). The v1 document is the modified document (in our use

case the modified text that had a primitive XML structure imposed on it by vdiff())

34

1. v0DOM = ParseAndLabel (v0document, isSource);
2. v1DOM = ParseAndLabel (v1document, isNotSource);
3. StructuralMapInfo = ParseMapFile (mapFile);
4. BuildSubTreeLookupTable (v0DOM);
5. FindAndUseIDAttrs (v0DOM);
6. TopDownMatchHeaviestTrees (v1DOM);
7. PeepHoleOptimization (v0DOM);
8. MarkOldTree (v0DOM, StructuralMapInfo);
9. MarkNewTree (v1DOM, StructuralMapInfo);
10. AdjustForUnSharedChildren (v0DOM, v1DOM,StructuralMapInfo);
11. BuildLeastCostEditScriptForWeakMoves (v0DOM, v1DOM);
12. DetectUpdatedNodes (v1DOM, v0DOM);
13. ConductAttributeOperations (v1DOM, v0DOM,

StructuralMapInfo);
14. WriteXIDmapFile (v1DOM);
15. WriteDiffInfoToFile ();

Figure 10 Pseudo-Code Algorithm for vdiff()

The ParseAndLabel method of line 1 and line 2, uses the Xerces [APA02b] XML

parser to parse and validate the input XML files. Immediately after parsing, the method

then traverses the in memory DOM tree and builds a mapping between each node and its

XID.

Line 3’s ParseMapFile method simply processes the contents of the file and

instantiates the appropriate classes and data structures. The data structures are primarily

STL maps that ensure O(1) lookup. This is essential to ensure little performance penalty

when checking to see if an element tag is shared between the two documents.

The BuildSubTreeLookupTable method on line 4 traverses the v0DOM-tree and

builds an average case O(1) lookup table of sub-trees. The key for each sub-tree is a hash

value created from the content of the sub-tree’s root plus the cumulative hash values of

its children.

The method on line 5, FindAndUseIDAttrs, uses the DTD of the source document, if

present, to determine if any elements can have ID attributes. If such elements can exist in

the document, traverse the v0DOM-tree and v1DOM-tree attempting to find the

appropriate matched nodes. Because XML ID attributes must be unique identifiers, no

35

further processing is necessary to make the match between a node in the v0DOM and the

v1DOM. The identical value in the two ID attributes is prima facie evidence of a match.

TopDownMatchHeaviestTrees, line 6, uses the sub-tree lookup table built at line 4, to

search for matches starting at the top of the v1DOM-tree. An obvious and mandatory

match of the root nodes happens first, then a breadth-first search. If a match occurs at a

non-leaf node, then recursively assign all the descendants of the matched nodes.

Line 7 shows the next step, PeepHoleOptimization. This is an attempt to increase

the number of matched nodes without incurring inordinate risks of creating false matches.

Briefly, if two nodes are matched, build a list of their respective unique unmatched

children. For every unique element tag in that child list, if there is only one instance of

that tag in each child list, match the child nodes. If there is more than one instance of the

tag, there is insufficient data to force a match.

Lines 8 & 9,MarkOldTree and MarkNewTree, are relatively straightforward. They

traverse the v0DOM-tree and mark as deleted every node not matched and whose tag

both documents share. The determination if the documents share a tag is through the

O(1) lookup tables built inline 3. Also mark nodes strong moved if they and their

matched node do not have parents that are themselves matched to each other. For the

v1DOM-tree, mark unmatched nodes as inserted.

AdjustForUnSharedChildren, line 10, is a key component to ensuring the proper

order of inserted and moved children. Without compensating for the offsets caused by

unshared children, a node’s child list will not be in a correct sequence. For example, an

inserted child may appear to be the ith child of a node in the v1DOM-tree. When

incorporated back into the original document however, it should rightly be in the jth

36

position. If left with an incorrect insertion position, the edit script will insert the node at

the ith position. This incorrect positioning will cause errors as minor as wrongly ordered

paragraph/picture sequences. The incorrect insertion point can also cause errors as major

as violating the DTD or Schema of the source document.

The BuildLeastCostEditScriptForWeakMoves method of line 11 is a

straightforward longest common sub-sequence problem. The task is to determine the

least expensive means by which each node can turn its old child sequences into its new

child sequence. The cost for inserts and deletes are proportional to the weight of the sub-

tree each child represents.

Line 12 has the DetectUpdatedNodes module. If a node and its matched node have

only singular unmatched text-node children, match the text-nodes. Consider the text-

nodes updated and assign new XIDs to them. While straightforward in, testing revealed

this inherited code from XyDiff() is fundamentally broken. The specifics of how this

module does not meet its design intentions are left for the results section of the thesis.

In line 13, ConductAttributeOperations looks at every matched node and

determines if its attributes represent inserted, deleted, or updated values. We again use

the StructuralMapInfo, built in line 4, and its O(1) lookups to minimize lookup expenses.

The lookup determines if the absence of attributes in a v1DOM-tree node are meaningful.

In the domain of our test sets, this function also infers attributes for inserted nodes. This

inference is critical to the proper rendering of paragraphs in both AbiWord and

OpenOffice. Attributes contain the style, font, and other formatting information for every

paragraph node.

37

More complete details of the implemented algorithm and discussion of

implementation hurdles are left for the next chapter. The current implementation also has

significant areas where future research can improve the performance significantly.

XML Difference Application/Patching

Applying the vdiff() generated edit script is an uncomplicated task. It consists of

parsing the v0 document that remains on the server and the edit script itself. The patch

program reads the externally stored XID file to correctly number each node in the v0

document while conducting its post order traversal. The patch program then reads the

edit script and follows the sequence of instructions for each node in the script. This tool

remains unchanged from that provided by INRIA’s VERSO team.

CHAPTER 5
IMPLEMENTATION AND IMPLEMENTATION HURDLES

Content Reduction

The first generation tool that converts our AbiWord documents to text uses a fairly

simple process. The Xerces XML parser reads, parses, and validates (as needed) the

input file. We took advantage of it’s built in transcoding mechanism to print all <p> and

<c> tags’ text-nodes to the output file. This is admittedly a simple process and not really

very interesting.

The second-generation tool will include the printing of stylized text to serve as

placeholders for data that cannot be easily rendered as text or would loose too much

information if translated into nothing but text (e.g. tables). On-going analysis of

AbiWord and OpenOffice files will provide further information on what structures can be

reasonably shown as raw text.

Client-Side Difference Detection

One of UbiData’s goals is to minimize the work a mobile device needs to accomplish

to access and change data that originated on other devices. We anticipate, but have not

implemented, a GNU diff() utility on the PDAs that will access UbiData. For the

purposes of this research, we have simply used the test bed computers to simulate the

receiving PDA. We also simulate the integration of the diff() utility with M-MEM by

manually starting the program and manually applying the edit script to the text document

that will reside on the UbiData server.

38

39

Imposing a Minimal XML Structure on Text Documents

The subscribers of USENET news groups that focus on XML are a broad based and

knowledgeable group. Suppose we took a poll and asked them, “Is it possible to convert

a text-only term paper into XML?” It is likely that the vast majority would flat say “No.”

Dissenters would qualify the “No” by placing a large group of pre-requisites in front of

their answer. While this research concurs there is no generic solution to imposing a given

XML structure upon a text only document, we approach the problem in a less

complicated manner.

Our implementation does not need to impose the complete AbiWord document

structure upon an edited text file. Nor would this be possible with large, and likely

incorrect assumptions about styling, language encoding, and any number of other

variables. Instead, our implementation uses non-automated analysis of the AbiWord file

format to discover that all paragraphs and text reside as children to either <p> nodes or

<c> nodes. Over 90% of the nodes in our test cases had all paragraph text as a text-node

child of the <c> tag. This pattern caused paragraphs to look like the following pattern: <p

style attributes > <c more style attributes> paragraphs or other text </c></p>.

This allowed use to realize we can impose a minimalist XML on the text document by

using a small sub-set of the node names AbiWord considers valid: <abiword>; <section>;

<p>; and <c>.

Figure 11 below shows the states we programmed into a simple lexer built with the

help of flex. This conversion from text to XML has similarities to what future efforts

will face when converting HTML or other formats to XML.

40

START

OPEN_C

OPEN_SEC

OPEN_PARA

<?xml ?><abiword><section>

Printable chars
<p><c> char_stream

\t <p><c>\t</c>

\t <c>\t</c>

\t || printable chars
\t || printable chars

Printable chars
<c> char_stream

\n || \r\n || \r
</p>\n || \r\n || \r

</c></p>

\n || \r\n || \r
<p/>

\f
</section><section>

\f
</c></p></section>
<section>

\f </p></section>
<section>

END

<<EOF>> </c></p></section></abiword>

<<
EO

F>
>

</
p>

</
se

ct
io

n>

</
ab

iw
or

d>

<<EOF>> </section></abiword>

Figure 11 State Transition Diagram for Text to AbiWord Converter

The input character stream drives the movement from one state to another and triggers

writing XML tags to the output stream. The tags enclose the triggering input characters

except in the face of the end of line characters and form feed character. We chose to

write the XML file as a two-line file: the XML declaration line and a second line with all

the nodes. This file is not easily read by humans, but is very efficient at preventing false

matches of end of line characters in the v0 document.

Algorithm Review

It is worth taking a moment to revisit the short version of the algorithm introduced in

the previous chapter. From this point forward, the discussion will delve into the

interesting details of the vdiff() program.

41

1. v0DOM = ParseAndLabel (v0document, isSource);
2. v1DOM = ParseAndLabel (v1document, isNotSource);
3. StructuralMapInfo = ParseMapFile (mapFile);
4. BuildSubTreeLookupTable (v0DOM);
5. FindAndUseIDAttrs (v0DOM);
6. TopDownMatchHeaviestTrees (v1DOM);
7. PeepHoleOptimization (v0DOM);
8. MarkOldTree (v0DOM, StructuralMapInfo);
9. MarkNewTree (v1DOM, StructuralMapInfo);
10. AdjustForUnSharedChildren (v0DOM, v1DOM, StructuralMapInfo);
11. BuildLeastCostEditScriptForWeakMoves (v0DOM, v1DOM);
12. DetectUpdatedNodes (v1DOM, v0DOM);
13. ConductAttributeOperations (v1DOM, v0DOM, StructuralMapInfo);
14. WriteXIDmapFile (v1DOM);
15. WriteDiffInfoToFile ();
Figure 12 Pseudo-Code Algorithm for vdiff()(Revisited)

The vdiff() processing occurs in a series of traversals of the XML DOMs representing

the two documents. As shown above, the first bottom up pass is to identify all nodes that

have ID attributes. The next pass is top-down and attempts to match sub-trees to each

other: the bigger the trees the more content is unchanged between documents. The final

matching step is what we have referred to as peephole optimization.

Component Implementations

ParseAndLabel

The ParseAndLabel portion of the algorithm is very straightforward. The Xerces

parser is very easy to use and Apache.org has provided superb documentation for the

API. After the parser completes the reading and processing of the file, we proceed to use

label the nodes with XIDs. If an existing XID map file exists, parse and use it to ensure

accurate versioning. If no XID map file exists, it is the first time vdiff() has encountered

the file. vdiff() conducts the post order traversal inserting each XID and DOMNode pair

into two STL maps: XIDbyNode and NodebyXID. This method is unaltered from the

XyDiff() tool.

42

ParseMapFile

The ParseMapFile method simply processes the contents of the file and instantiates

the appropriate classes and data structures. The data structures are primarily STL maps

that ensure O(1) lookup. A complete review of every class and supporting method will

add little to this discussion. Implementation of this task was not difficult and the

justifications for the structures implemented are in the previous chapter.

BuildSubTreeLookupTable

BuildSubTreeLookupTable traverses the v0DOM and builds an average case O(1)

lookup table of sub-trees. It does this but building a vector of maps. The maps use tree

hash values as keys, and vectors of XIDs as the data member. Each position in the

outermost vector is the number of generations between any given node and the root. The

map at each vector index stores the hash values of every node between a given node and

that parent. This is also unaltered from XyDiff().

hash 1

hash n

hash2

S
TL

 M
AP

Hash 1

STL vector of XIDsHash value of nodes/sub-trees within this generation

0

hash 1

hash n

hash2

S
TL

 M
AP

STL vector of XIDs

Hash value of previous 3 generations of nodes/sub-trees

3

1

2

n

Figure 13 Sub-tree and Hash Lookup Table used for Top-Down Matching

FindAndUseIDAttrs

FindAndUseIDAttrs uses the DTD of the source document, if present, to determine if

any elements can have ID attributes. Out implementation also does not take advantage of

43

Xerces’ XML Schema support. This is a shortcoming that will limit the useful life of

vdiff(). No change occurred between XyDiff() and vdiff() yet, but vdiff() will provide

schema support soon.

TopDownMatchHeaviestTrees

TopDownMatchHeaviestTrees uses the sub-tree lookup table built to search for

matches starting at the top of the v1DOM. An obvious and mandatory match of the root

nodes happens first, then a breadth-first search. During this breadth first search, each

child node of the root (and its children) checks it’s own and its sub-tree hash value for a

match starting at the one (1) index of the lookup table. If it does not find a match, then it

uses the map at index two (2) of the lookup table. This continues up to a fixed number of

generations or until the algorithm passes the root. If either happens, it then conducts a

search of the map at position zero (0). Obviously, the further up a node travels on its

ancestral path towards the root, the bigger the sub-tree being matched. Equally plain is

that few big sub-tree matches is preferable to hundreds of small single node matches. If a

match occurs at a non-leaf node, then recursively assign all the descendants of the

matched nodes. Though the data structure that supports this methods is somewhat

convoluted, it remains as it is in XyDiff().

PeepHoleOptimization

PeepHoleOptimization occurs next and is the last attempt at matching nodes in this

implementation. Due to its importance, we discuss this step in the next section.

MarkOldTree and MarkNewTree

MarkOldTree and MarkNewTree are relatively straightforward. Adjustments to these

methods from the INRIA algorithm include utilizing the Structural map file discussed in

section entitled Meta-Data to Support Content Customization and Structural Similarities.

44

Traverse the old tree and for every node not matched, if the two documents have this tag

name in common (O(1) lookup using the StructuralMapInfo) mark it deleted.

Mark a node strong moved if it and its matched node do not have parents that are

themselves shared and matched to each other. When the v0DOM is not as flat as it is in

AbiWord the determination of a strong move is more complicated than at first glance.

#text
XID=1

<text:p>
XID=2

Text w/Heading 1
XID=3

<text:p>
XID=4

test w/Heading 2
XID=5

foo

<text:p>
XID=6

test w/Heading 2
XID=7

bar

<text:p>
XID=8

listitem
XID=9

ordered list
XID=10

<text:listitem>
XID=11

<text:orderedlist>
XID=12

#text
XID=13

<text:s/>
sentence delimiter

XID=14

#text
XID=15

<text:p>
XID=16

#text
XID=17

<text:s/>
sentence delimiter

XID=18

#text
XID=19

<text:p>
XID=20

document_content
XID=21

Figure 14 OpenOffice XML Structure of a Document

Test w/Heading 1
XID=1

<text:p>
XID=2

#text
XID=3

<text:s/>
sentence delimiter

XID=4

#text
XID=5

<text:p>
XID=6

test w/Heading 2
XID=7

bar

<text:p>
XID=8

test w/Heading 2
XID=9

foo

<text:p>
XID=10

#text
XID=11

<text:s/>
sentence delimiter

XID=12

#text
XID=13

<text:p>
XID=14

document_content
XID=13

Figure 15 OpenOffice XML Imposed on a Text File

The two XML documents vdiff() is processing do not share the gray shaded nodes in

Figure 14 and Figure 15. Suppose that the nodes labeled XID 6 in each document are

matched. The simple approach of seeing if their respective parents are also matched does

not work. Instead, we traverse up the v0DOM from XID 6 to the first shared node. If

45

that shared node is not the match to the parent of XID 6 in v1, then we can call the action

a strong move.

AdjustForUnSharedChildren

Like PeepHoleOptimization, this topic presents several obstacles to a generic

implementation and deserves a complete review in a later section.

BuildLeastCostEditScriptForWeakMoves

Once vdiff() marks nodes as strong moves, insertions, and deletions we are ready for

another straightforward step. The user will have left the DOM tree in a defined state

upon his closing the file. Matching nodes is only one part of what vdiff() needs to do.

The next, and potentially the most computationally expensive, step is to determine the

least expensive way to get the children of a v0 node into the same order as its matched v1

node has. If we treat each child node and its sub-tree as a unit, this is simply a longest

common sub-sequence problem. The task is to determine the least expensive means by

which each node can turn its old child sequences into its new child sequence. The cost for

inserts and deletes are proportional to the weight of the sub-tree each child represents.

This process remains unchanged from XyDiff().

DetectUpdatedNodes

DetectUpdatedNodes is also straightforward in implementation. If a node and its

matched node have only singular unmatched text-node children, match the text-nodes.

Consider the text-nodes updated and assign new XIDs to them. Because of our

implementations difficulties with peephole optimization, vdiff() does not catch updated

nodes unless there is only one unmatched node between the two documents.

46

ConductAttributeOperations

ConductAttributeOperations is another uncomplicated task. It is modified in

vdiff() to take advantage of the StructuralMapInfo represented by the map file. This

process looks at every matched node and determines if its attributes represent inserted,

deleted, or updated values. We again use the StructuralMapInfo and its O(1) lookups to

minimize the expense of determining if the absence of attributes in a v1DOM node are

meaningful. In the domain of our test sets, this function also infers attributes for inserted

nodes. This inference is critical to the proper rendering of paragraphs in both AbiWord

and OpenOffice. Attributes contain the style, font, and other formatting information for

every paragraph node. Overall, this process is O(n) with n the number of nodes in the v0

document.

It is now time to visit the implementation details of peephole optimization and

AdjustForUnSharedChildren.

Peephole Optimization

Current Implementation

The intent of the process called peephole optimization [COB02] is to raise the number

of matched nodes between the two XML documents. By increasing the number of

matched nodes, we expect a corresponding decrease in the size of the edit script. The

process starts with a recursive traversal the v0 document tree and is show below.

For each matched node, collect all the unique unmatched element-node children (lines

1-10 in Figure 16). Collect all the unique unmatched element-node children of the

matching node in the v1 document. For each unmatched child with a unique element

name in the v0 child list, if the v1 child list has at most one instance of a tag with the

47

same label, consider those two nodes a match and give each the other’s XID (lines 15-20

in Figure 16).

1. DOMNodeList getUnMatchedKids (DOMNode startNode) {
2. DOMNodeList childList;
3. childNode = startNode.getFirstChild();
4. while (childNode != NULL) {
5. if (isUniqueChildName(childNode.getNodeName() &&
6. childNode.matchID == NULL)
7. childList.addNode(childNode);
8. childNode = childNode.getNextSibling();
9. }

10. }

11. peepHoleOptimize {
12. if isMatched (v0Node){
13. v0unMatchedKidList = getUnMatchedKids (v0Node);
14. v1unMatchedKidsList = getUnMatchedKids (v1Node);
15. for (int i=0; i< v0unMatchedKidList.length(); i++){
16. v0kidNode = v0unMatchedKidList[i];
17. v1kidNode = v1unMatchedKidList.find(kidNode.getNodeName());
18. if (v1kidNode != NULL)
19. v1kidNode.matchID = v0kidNode;
20. }
21. }

Figure 16 Pseudo-Code for Peephole Optimization

The process is shown graphically in. The algorithm as discussed so far will match the

root nodes (as a matter of necessity), and nodes 15, 17, and 26. These matches (solid

lines) occur because the weights of their trees are identical or they have ID attributes—

the identical XIDs in the figure are purely visual aids. Suppose the algorithm

Figure 17 Peephole Optimizations of v0 and v1

<p>
XID=15

<p>
XID=17

<p>
XID=20

<p>
XID=23

<image>
XID=26

<foo>
XID=28

<section>
XID=34

<abiword>
XID=35

<p>
XID=15

<p>
XID=17

<p>
XID=58

<image>
XID=26

<p>
XID=67

<foo>
XID=97

<section>
XID=34

<abiword>
XID=35

48

does not immediately match v0 nodes 20, 23, or 28 or v1 nodes 58,67, and 97. Now the

peephole process starts at the v0 root and discovers it has an unmatched child, a single

instance of the <section> tag. The process then moves to v0’s root’s matched node, the

root of v1. The matched node also has only one child, also of tag <section>. The

singular instance of a unique tag allows a match (the dashed line) to happen between the

two <section> nodes.

Now consider the matched <section> nodes. The <section> node of v0 has two

children that are <p> nodes. Because of this, the algorithm cannot make any reasonable

assumptions about which v1 node is the respective match. In the case of the <foo> node,

each <section> node has only a singular instance. Without making any inferences how

far down the <foo> hierarchy this match may propagate, the algorithm makes the

reasonable assumption that the two <foo> tags should be matched.

It is apparent that there remain two <p> tags in v0 and their respective sub-trees that

are eligible for matching against nodes in the v1 DOM. As implemented in XyDiff(),

these paragraphs will not be matched against each other, nor will their respective <c>

children and text-node children. The practical effect of this is that if XID 58 should be an

update action (as determined with through visual change detection) against XID 20, the

algorithm will not detect it. Nor will it detect an update in XID 67 from XID 23. The

other practical effect of this is that the algorithm will consider the failure to match as a

delete action against XID 20 and 23, and an insertion of XID 67 and 58. This still falls

into the category of sub-optimal matching when the discussion remains purely in the

realm of tree matching. However, from the user’s perspective in AbiWord and

OpenOffice, the delete followed by an insert yields predictable consequences: the

49

inserted paragraphs do not have the same formatting as the deleted paragraphs. From the

user’s viewpoint through the AbiWord GUI, it looks like all formatting beyond

Style=”Normal” for every changed paragraph is lost upon importing changes from the

PDA to the desktop unit. This is clearly an unacceptable result and one which we discuss

further.

Two Failed Approaches

We developed two further techniques in an attempt to find generic algorithms usable

in the face of multiple instances of the same tag. The first was to build a list of nodes

with that tag in v0 and a list for nodes with that tag in v1. The list is still exclusively of

the children of the matched node (in this case, <section>). We then did a one-for-one

match of each node in the lists. This method does raised the number of matches for the

<p> tags, but has immediately apparent side-effects in the size of edit scripts and the

resulting updated documents. These forced matches do not account for entire <p>-rooted

tree’s being reordered as children of <section>. Nor does the increased percentage of

matches decrease the size of the edit script: it made the edit script larger in every case

except trivial deletes with singular insertions or update actions.

We next tried to develop an algorithm that used a matched sibling as a clue towards

improving peephole performance. In the same scenario as above, each unmatched child

of <section> in v0 has a choice of multiple <p> children of v1’s <section>. We use the

matched siblings of the unmatched child to help pinpoint where a likely match would be

in the v1 document. Unfortunately, this method proved incapable of coping with

reordered children and inserted nodes. We did not implement this method due to these

two shortcomings. A likely solution to our problem of too many choices and not enough

info to make intelligent choices is in the future work chapter.

50

AdjustForUnSharedChildren

55 12 47

75

47

12 35 55 61 70

75

Figure 18 Simple Child Reordering Problem

An important issue is child ordering of a matched node when some of the children are

not shared across XML documents. An inserted, moved, or weak-moved child may

appear to be the ith child of a v1 node. When incorporated back into the original

document however, it should rightly be in the jth position. If left with an incorrect

insertion point, the vdiff() script will insert those nodes at the point of the child list.

In the two documents shown in Figure 18, the white nodes are shared and identical

numbers across both documents indicated a matched node. Light gray nodes (35, 61, and

70) are not shared across the original v0 document and the modified v1 document (the

nodes may contain style information, pictures, or other embedded objects). The dark grey

node (47) is a strong moved node: it is matched but its parent in v0 is 12 and parent in v1

is 75. The challenge is to ensure that the ordering of paragraphs in the v1 document stay

the same with respect to each other. Another consideration is that the ordering of the

unshared nodes in v0 should also stay the same with respect to each other. Reordering the

nodes without user input is unjustified and potentially ruinous of the document.

Without child reordering in v1, the weak move of child 55 (75’s first child) would be

placed first in the patched child list. The child list would look like [55, 12, 35, 61, 70]. So

far this does represent a potentially fatal merge-error. When we include the insert of 47

as child 3 in the v1 document, we end up with a child list of [55, 12, 47, 35, 61, 70]. What

51

we are currently unable to prove is that this is “correct” in all instances. According to the

original document the pattern of nodes is [S, U, S, U, U] with S representing a shared tag

and U an unshared tag. When we apply the patch we have a pattern of [S, S, S, U, U, U].

Put in context we had a text paragraph, a picture, a text paragraph, and two

pictures/embedded objects. After the patch we have three text paragraphs followed by

three pictures/embedded objects. There are multiple ways to accomplish this merging of

unshared tags and some negative repercussions in particular applications.

In the case of AbiWord (Figure 19), the <styles>, <pagesize> and other application-

specific data are before all section nodes. If a user adds a new section as child 2 of

<abiword> (), simply inserting it at position 2 in the v0 document will break the DTD

and render the document unusable.

comment(s)
<!-- -->
XID=1

<styles>
XID=4

<lists>
XID=7

<ignoredword>
XID=10

#text
XID=11

<c>
XID=12

#text
XID=13

<c>
XID=14

<p>
XID=15

#text
XID=16

<p>
XID=17

#text
XID=18

<c>
XID=19

<p>
XID=20

#text
XID=21

<c>
XID=22

<p>
XID=23

#text
XID=24

<c>
XID=25

<p>
XID=26

#text
XID=27

<p>
XID=28

<section>
XID=29

<abiword>
XID=30

Figure 19 AbiWord XML Document With Unshared Nodes Highlighted

52

#text
XID=11

<c>
XID=12

#text
XID=13

<c>
XID=14

<p>
XID=15

#text
XID=16

<p>
XID=17

#text
XID=18

<c>
XID=19

<p>
XID=20

<section>
XID=21

#text
XID=22

<c>
XID=23

<p>
XID=24

#text
XID=25

<c>
XID=26

<p>
XID=27

#text
XID=28

<p>
XID=29

<section>
XID=30

<abiword>
XID=31

Figure 20 A v1 Document With a Second <Section> Tag

An immediately apparent and naïve approach would be to prepend all the unshared

nodes to the child list of the shared v1 parent (so 75’s child list in v1 would be

[35,61,70,55,12,47]). Equally naïve would be to append the unshared nodes, giving

[55,12,47,35,61,70]. In the case of AbiWord and OpenOffice documents, either approach

can render the document unusable by the application.

Unsuccessful Approaches

The first approach we used was a rather convoluted dual pointer method. The matched

nodes placed a pointer on each of their first children. The algorithm stepped through the

v0 child list and when a node it visited was unshared, immediately copied that node into

the v1 child list. The v1 child pointer moved to its next sibling only when the v0 pointer

visited its matched node. When it moved, it check to see if where it was pointing had

been visited yet, and if so kept moving until that condition did not hold. While this

method worked in the first few test sets, it exhibited fatal behavior in a pathological case.

In the event the first node in the v1 child list was the last node in the v0 child list, all

unshared nodes got prepended to the v1 child list. This translated into a false move for

53

every unshared child node, and made the document unusable or required extensive

editing to fix.

Current Approach

The currently working implementation uses a simpler method, though arguably naïve

in its own right. We implement a method that duplicates the pattern of Shared and

Unshared nodes first displayed in the v0 document. Let the v0 document’s matched node

have a [U,U,U, S, S, U, S] pattern of child nodes. Also let the v1 document’s matched

node have a pattern of [S, S, S, S]—it is impossible for the v1 document to have unshared

nodes. When reordering the children of v1 we replicate the v0 pattern and append any

excess shared-nodes onto the end of the pattern. This method, with our test set, produced

workable AbiWord and OpenOffice documents. What it failed to do was allow for not

following the original pattern as defined by the v0document. We could not produce a

change in the text document that increased the number of shared nodes between two

unshared nodes.

Conducting Attribute Operations

The need to infer attributes for a node is entirely dependent on the class of XML

documents the original document came from. Attributes in the AbiWord and OpenOffice

encoding schemas allow individual paragraph level definition of their style, font, and

other rendering information. In the case of AbiWord and OpenOffice, paragraphs not

having attributes remain in the data file, but do not rendered correctly in the application.

Other applications generating different XML documents may not need to infer attributes,

and indeed may have no attributes to worry about. Before we chose to implement the

intelligent default method for inserted nodes, we attempted to infer attributes of inserted

nodes.

54

An inserted paragraph could inherit the attributes of the previous (or following)

paragraph. This might be done by maintaining a list with references to every paragraph,

allowing rapid movement through the sequence of paragraphs in the v1 document without

traversing the DOM tree. The time complexity of this method should be constant (though

we provide no formal proof). If the program builds the list as it processes the tree,

finding the previous paragraph requires a single de-reference of a pointer. Space

complexity will be linear in number of unique tags in v1 and the number of instances of

each tag. Building a list, instead of maintaining information on the last paragraph, would

also allow for inferring attributes across section boundaries or other portions of the

document where using the last visited paragraph’s attributes is insufficient.

The initial inference algorithm used a two-phase approach of copying every matched

node’s attributes from the v0 document to the v1 document. This would have the added

benefit of reusing known working code from the original XyDiff() code that conducted

attribute operations. The time complexity of this step was O(n) with n the number of

matched nodes. The second phase used a pre-order traversal of the v1 DOM-tree to find

the previous paragraph and copy the attributes to the v1 node. This two-phase approach

induced experimental processing times an order of magnitude higher than using the

default attribute method. It also caused attribute operations to start dominating the total

processing time as the number of inserts in a document climbed. We will show in the

results chapter why we abandoned this technique. Post-experimental analysis also

revealed that the implementation was actually O(nm) with n being the number of nodes

inserted and m being the number of nodes in the v1 document. Traversing m nodes for

each of n inserted nodes caused a tremendous negative impact on the processing time.

55

Another drawback of inheriting from previous paragraphs is it makes no sense when the

new paragraph belongs to a different chapter, section, or other boundary within a

document. A final drawback of inheriting attributes is the domain specificity of the

technique: its okay for paragraphs in word processors, not for a generic XML document

with no knowledge of the knowledge domain the document belongs to.

We developed another a single-phase approach to attribute inference that also relied

on inheriting from previous or following paragraphs. Instead of building a data-structure

of unique tag names and lists of nodes with that tag, we used the DOM Node’s ability to

traverse from sibling to sibling. This proved insufficient to always find a previous

paragraph node at the same level in the DOM tree: consequently demanding a reverse-

order traversal starting at the node we needed to get attributes for. We believe this reverse

order traversal, also worst-case O(n), would lead us to another O(nm), for m inserted

nodes. We did not implement this method as one O(nm) solution already proved

disastrous in performance.

CHAPTER 6
EXPERIMENTAL RESULTS

Test Platform, Equipment, and Methodology

The testing platform was a PC equipped with 128 MB RAM, an 800 MHz Pentium III

processor, and a Maxtor 52049H3 Hard Disk. It was running RedHat Linux with kernel

2.2.16, and Xerces-C++ 1.4. We used gmake 3.79.1 and gcc/g++ 2.96 to compile the

program and its associated utilities. We also used a Sony Vaio Pentium III with 256 MB

RAM also running Red Hat 7.2. The Sony used the same version of gmake and gcc/g++

3.04 as its compiler.

Test data for the experiments consisted of a just over a dozen term papers, memos,

letters, and scratch documents. We used AbiWord [SOU02] and OpenOffice’s StarWriter

[OPE02] word processors to create the documents and save them to their canonical XML

format. Since both applications store document data in XML this made no conversion

from proprietary formats necessary. The test documents at this stage contained no

graphics or other embedded objects, just formatted and styled text. We deliberately kept

the test set small to better control the fluctuation of document structure within a

collection of word processing documents.

We then used an automated script to insert, delete, move, and update 10%, 20%, 30%,

40%, 50%, 60%, 70% and 80% of the paragraphs of each originating document. The

sequence of testing shown below graphically shows what the following verbiage

describes.

56

57

XML
document
version n

Text
document
version n

10%, 20%,
30%, 50%,

80% of version
n’s paragraph
insert, delete,
move, update

Text
document
version n+i

Text 2 AbiW
Converter

Primitive
XML

document
version n+i

XyDiff vdiff

diff

Diff script

DiffApplyProgram

Diff script

DiffApplyProgram

AbiWord AbiWord

XML
document
version n+i

XML
document

version n+1

Statistics
Capture, Parse,

and Analysis

Figure 21 Testing Methodology for vdiff(), XyDiff(), and diff().

The quantity of data needed from multiple sources mandates an automated test setup.

The overall script controls the generation of test documents from the original XML. It

converts the XML into text, then executes the modifications to 32 copies of the text file.

The script then runs diff() against the text only files. It also runs both XyDiff() and vdiff()

against the original XML and the primitive XML files. Next it applies the edit script to

update the original XML file. The script captures all the statistics associated with each of

these tasks. In addition, we must visually inspect the AbiWord document the patch

program created. This allows a user’s-perspective of changed, lost, or misplaced

paragraphs and their formatting through the AbiWord interface.

Abiword as Data Generator

A side effect of using the AbiWord Word processor as a generator of test documents

presented itself very early. The DTD that all AbiWord files reference is not up-to-date

58

with respect to the files that AbiWord generates. AbiWord uses a custom built parser that

does not validate the input documents against the DTD. Our solution, after consultations

with the AbiWord Development team, was to remove the DTD reference from the data

file. The practical result is that removal of the DTD reference does not interfere with

reloading the document into XML.

The prime difficulty with AbiWord in this research is the sporadic inconsistency in

embedding a paragraph tag within appropriate tags. As discussed earlier, most

paragraphs have a structure that looks like <p><c>text stuff</c></p>. Approximately

five percent of the time, AbiWord instead generates paragraph structures like <p> text

stuff </p> or even <p> text stuff <c></c></p>. Discussion with the AbiWord

development team is ongoing and has not resolved the unpredictable nature of this

problem. When this phenomena appears, we have either left it as is, and labeled the

visual error it produces as an error, or we have normalized the structure to the

<p><c>text</c></p> structure.

OpenOffice Writer as Data Generator

OpenOffice is a direct descendant to Sun’s StarOffice 5.2. As such, OpenOffice as a

significant more polished and refined user interface. OpenOffice also has a richer

complement of currently implemented features than AbiWord. This feature set provides

the ability to expand the types of structures embedded in the documents and stretch our

format conversion techniques.

Another advantage of OpenOffice is it is an office suite of tools, not a single

application that generates word processing documents only. OpenOffice has a

presentation application much like Microsoft’s PowerPoint. OpenOffice also has a

spreadsheet application. Yet another important advantage of OpenOffice is that all its

59

applications use XML encoding for all their data formats. The XML reside in ZIP

archives that contain additional data about each file, but accessing the XML content is

supremely convenient.

Results

Bandwidth Conservation Through Content Conversion

One of the propositions this research puts forward is that there is a quantitative

difference in the amount of data a device must transfer for a MS-Word document

compared to an ASCII document. Though this seems like common sense, quantifying the

actual values gives a better knowledge of the actual savings. Research with the

Puppeteer [FLI01] system also validates the savings information listed below.

The first place to see the quantitative difference between documents is to look at the

rather widespread Microsoft Word application. To gather this data, we searched the

personal home computer of the author and discovered 398 MS Word documents. The

documents run a gamut from single page letters to businesses and friends to

organizational manuals, term papers, and thesis documents.

Table 3 Average Microsoft and Text Document Size
 MS-Word ASCII Text Ratio

Average Size 38.8 KB 7.4 KB 0.19
Std Deviation 22.5 KB 10.3 KB
Average Savings 31.4 KB

To continue this examination of savings, we examined the test set of AbiWord

documents. This set contains 13 documents created by importing 13 different word

documents from the set used in Table 1.

60

Table 4 Average AbiWord and Text Document Size
 AbiWord ASCII Text Ratio

Average Size 23.6 KB 6.3 KB 0.27
Std Deviation 16.3 KB 4.8 KB
Average Savings 17.3 KB

This is a significantly smaller test set than that created for Table 1 but the savings are

still plain. Graphically we depict this information below in Figure 2 through Figure 5.

0.0

50.0

100.0

150.0

200.0

250.0

9.5 61.0 107.5 177.0

WordDocSize(KB)

K
ilo

by
te

s

ASCII Doc
Savings

Figure 22 Comparative File Size for MS-Word Documents and Text Documents

61

0.0

50.0

100.0

150.0

200.0

250.0

9.5 45.5 76.0 107.5 150.5 223.5

Word Doc Size (KB)

K
ilo

by
te

s

ASCII Doc
Savings

Figure 23 Text Document and Byte Savings as Word Documents Increase in Size

Finally we show the standard deviation in the size of the ASCII documents. This

provides us with more justification to believe that the size of the text documents stays

relatively constant. The larger a Word document the more often it has multiple

embedded objects in it. It is those embedded objects that produce the majority of the

growth in Word documents: it is not the text component of documents. This information

also indicates that in-memory processing of the documents will not present a significant

burden to PDAs. Even small PDAs now how upwards of 8 MB of memory built in.

0

10

20

30

40

50

60

0 50 100 150 200 250

Word Doc Size (KB)

St
d

D
ev

 (K
B

)

Figure 24 Standard Deviation of ASCII Documents Derived From Word Documents

62

0

10

20

30

40

50

60

0.
15

0.
46

5.
28

12
.7

7

17
.4

4

21
.2

8

25
.8

0

33
.6

9

40
.5

8

Size of AbiWord Doc (KB)

K
ilo

B
yt

es

text

AbiWord

Figure 25 File Size for AbiWord Documents and ASCII Text Documents

Bandwidth Conservation Through Client-Side Use of GNU diff()

When the mobile devices update data they have two choices on how to transmit those

changes back to the UbiData server. The first choice is value shipping and the second

choice is shipping an edit script. Using information from above we can see that sending

entire documents while fail to meet any of the UbiData goals.

For mobile devices incapable of providing the processing power and hardware to

support vdiff(), we have designed the system so that the receive text only documents.

When the mobile devices needs to ship the changes back to UbiData, it uses the text only

diff(). The table below shows the summarized version of the savings we incur by using

diff() compared to value shipping. It also shows summary data of information presented

in the next section: vdiff() versus XyDiff() versus diff().

63

Table 5 Savings Achieved Through Use of diff() Tools versus Value Shipping
 Value Shipping diff() Generated

Script
vdiff()
Generated
Script

XyDiff()
Generated
Script

Avg file size 5735 Bytes 1063 Bytes 2039 Bytes 7679 Bytes

The same information displayed graphically is below in Figure 6. The mobile client

will be able to send significantly smaller quantities of data by taking advantage of diff().

Without using a change detection mechanism, the client would have to ship the entire file

anytime it needed to update the server.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

0.11 0.23 0.24 8.54 9.59 14.32 23.96 27.08 23.04 81.21

Size of Modified Doc v1(-) (KB)

Si
ze

 (K
B

)

v1(-)
edit script

Figure 26 Savings Through diff() on Client versus Value-Shipping Entire File

The size of our test set is too small to confirm these ratios will hold across the entire

spectrum of documents that AbiWord and OpenOffice can create.

Comparison of vdiff(), XyDiff(), and GNU diff()

Our vdiff() performed consistently faster than XyDiff() despite the extra overhead

associated with the StructuralMapInfo discussed in the Implementation Chapter. The

likely cause of this behavior is the increased costs XyDiff() incurs by treating every

absence of a node in v1 that was originally in v0 as a delete. As we discussed, some

nodes are not in v1 because of deliberate decisions to curtail the amount of material

64

transmitted to the mobile client. XyDiff() must create additional entries in the edit script

and must write to disk a larger edit script than vdiff().

Prior to going further we need to explain the use of diff() as a benchmark by which to

put our performance in context. In some ways, comparing diff()’s performance against

vdiff() and XyDiff() is inappropriate. It is similar to comparing the efficiency by which a

hammer inserts screws into a piece of wood.

The first purpose provides a differential look at the amount of time a mobile device

will commit to processing a text-only diff() on text-only files compared to an XML diff()

on XML files. Increased processing demands will necessarily decrease the battery life of

a mobile device: use of text-only files with text-only diff() may help limit the amount of

processing power a device devotes to this activity. This viewpoint is shown in Table 3

previous section and substantiated by the tiny diff() script size in the graph above.

The second purpose of using diff() as a benchmark is to show that vdiff(), though not

as fast as diff(), is still faster than other current technology. We have made progress by

improving not only performance in time but also in the size of diff() scripts generated.

0

50

100

150

200

250

diff (xml) vdiff xydiff

Figure 27 Cumulative Execution Times for diff(), vdiff(), and XyDiff()

65

The time required by diff() to execute its algorithm on the text only documents is near

constant within the test set. The time required by diff() to execute on pre-processed v0

and v1(-)’ is also near constant as shown below in Figure 8. It shows that the GNU diff()

clearly outperforms vdiff() and XyDiff(). It also shows that vdiff() does outperform

XyDiff() as shown in Figure 7.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.
06

0.
16

0.
29

0.
76

3.
71

8.
18

9.
39

10
.2

4

13
.3

4

28
.4

9

Size of Modified Doc v1(-)' (KB)

Ti
m

e
(m

s) diff (v0(-) to v1(-))
diff (v0 to v1(-)')
xydiff (v0 to v1(-)')
vdiff (v0 to v1(-)')

Figure 28 Comparative Execution Time for diff(), vdiff(), XyDiff()

The information in Figure 9 also shows a clear improvement over existing technology.

Though we again do not meet the standard that diff() sets, neither do hammers often

succeed in correctly setting screws into woodwork. We do however offer a power drill

with screw driver attachment while XyDiff() offers the manual screwdriver.

There are two critical distinctions to keep in mind when reviewing the large diff()

script size relative to diff() and the slow execution time relative to diff(). The first

consideration occurs when GNU diff() runs against the full-content XML document and

the primitive XML document sent back from the mobile device. The edit script it will

cause removal of all application specific data that provide key and essential rendering

66

information to AbiWord and OpenOffice. It will corrupt the document such that the file

becomes unusable. The second consideration comes into play when using diff() against

actual XML files, and not pure text files as shown above. XML is text and a natural

assumption would be to use diff() on this text file. The difficulty arises when the XML

file is only one or two lines long, but has kilobytes or megabytes of data within those two

lines. A minor change in a single node will require diff() to generate a script twice the

size of the file.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

vdiff diff (xml) xydiff

Si
ze

 (K
B)

Figure 29 Delta Script Sizes for diff(), vdiff(), and XyDiff()

One other measure of performance we want to convey is the number and types of

errors XyDiff() and vdiff() induce in AbiWord documents. It is possible, even likely, that

the two tools will generate errors in the matches. Most current research typically refers to

these types of errors as sub-optimal matching. It is also possible that the results of the

sub-optimal matching will have no impact at the application and user level. A prime

example is the false movement of empty lines. These false moves are erroneous: they

67

cause larger diff() scripts and non-optimal matching. From the user’s viewpoint, working

through the AbiWord interface, no error is apparent. Thus errors in vdiff() matching must

receive two standards by which to judge their quantity and severity. Those two standards

are in terms of non-optimal matches and in terms of user identifiable errors.

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

0.06 0.16 0.29 0.76 3.71 8.18 9.39 10.24 13.34 28.49

Size of Modified Doc v1(-)' (KB)

%
O

rig
. N

od
es

 D
et

er
m

in
ed

 C
ha

ng
ed

predicted
vdiff
xydiff

Figure 30 Predicted Performance Versus Actual vdiff() and XyDiff() Performance

The three lines of performance in Figure 10 reflect the first standard of measurement:

non-optimal matching. Under an ideal and optimal matching, the expectation is the

number of nodes XyDiff() and vdiff() identify as changed should match the number we

know are changed. We know precisely the number of nodes that get changed by

insertion, deletion, movement and updating paragraphs. With this knowledge the

predicted line comes into existence. We gather the data from XyDiff() and vdiff()

themselves on the number of nodes they identify as changed with respect to the version n

XML document.

With the three sets of data, we can show that vdiff() outperforms XyDiff(). We also see

that vdiff() is less than optimal. There are two principle causes for the less than optimal

68

performance. The first is that the algorithm does not consistently identify updated nodes.

Unless there is only one paragraph updated, the algorithm is able to find it. If there is

more than one, vdiff() cannot currently determine which v0 paragraphs match which v1

paragraphs. This implementation problem is thoroughly discussed in the implementation

section of this thesis and in the future work section. The second performance problem is

caused by false moves of empty lines represented by empty paragraph tags (<p/>). The

lookup table created when traversing the v0 document inserts XIDs into a vector

identified by the hash value of the node. All empty paragraphs throughout the entire

document have identical hash values. Since the XIDs are stored in a vector, we end up

with a first visited-first matched situation for all empty lines in v1 against all empty lines

in v0. The last measure we will discuss is the number and type of errors a user perceives

in AbiWord.

Recall that a goal of UbiData is to allow the executive to make spelling error

corrections and other edits on his mobile device. With this system he is supposed to have

a high level of confidence that his changes will correctly propagate to the server. This

expectation leads us to our last measure of performance for vdiff(). The information

shown in represents the number of errors vdiff() induces in documents that have edit

scripts applied to them. All the errors associated with vdiff() originate with the update

detection mechanism. As update does not work, vdiff() treats all updates as deletes

followed by inserts. Consequently, all updated paragraphs get reinserted using the

default attributes of “Normal.” The information in Figure 11 can be slightly misleading.

Recall that AbiWord is unable to open or otherwise use the v1 files created by XyDiff().

The line in the figure below represents the number of paragraphs in the test documents.

69

Each of those paragraphs would have lost all formatting that may have existed in v0:

hence the extrapolated data points for errors generated by AbiWord.

0

20

40

60

80

100

120

140

160

180

0.06 0.41 3.44 4.43 9.24 9.99 11.18 23.96

Size of Modified Doc v1(-)' (KB)

N
um

. E
rr

or
s

In
 P

at
ch

ed
 D

oc

vdiff"
XyDiff

Figure 31 User Perceived Errors in v1 Documents Using AbiWord

CHAPTER 7
FUTURE RESEARCH

Peephole Optimization

The most likely solution to improving the number of matches vdiff() discovers

between two documents is to add another step of processing before trying the peephole

method. After more experiments and brainstorming, we have come to the conclusion that

one-layer deep optimization is the best an algorithm can do when it knows nothing of the

defined structure.

It would be possible, and preferable for a peephole technique on Abiword documents

be different than the technique for OpenOffice. While contrary to programming to the

generic solution, this custom approach should overcome the hurdles and performance

penalties of the XyDiff() method.

Specifically there should be two lines of effort. One will involve expanding the

schema that tracks structural similarity to include information a generic peephole method

can use. In the case of AbiWord, we can encode information that <p> tags and their

immediate <c> children cannot provide sufficient information to help. Indeed, the

peephole algorithm must go to the <p> and <c> tags’ text nodes and use their content as a

basis to judge similarity to other <p> tags’ text descendants.

Once comparing the text nodes, we can adapt current work on approximate string

matching or even use GNU diff() to determine the likely candidates for a match. If two

text nodes cross a threshold of similarity, again defined in the schema, then vdiff() can

declare them a match and mark the nodes for an update. The effect will be an increase in

70

71

the number of matched nodes between the two documents. With the increase in matched

nodes and nodes declared updates, we will have a corresponding decrease in the umber of

delete/insert pairs.

An additional effect of this modification will be to reduce the size of the old and new

data embedded in the Update actions of the diff() script. Update actions in the diff() script

carries with them the old and new values of a node. Since we have used a diff() tool to

measure similarity we can take the output of that tool and use it as the data stored in the

diff() script. This stands in contrast to storing the entire old and new paragraph: which is

the current method.

An alternative to doing top-down optimization is to start at the leaf nodes and again

use some threshold of similarity defined in the schema. When two nodes cross the

threshold, consider them matched and attempt to propagate their match upwards among

their respective ancestors. This technique would be very similar to that used in [CHA96]

and in the vdiff() and XyDiff() MatchUsingIDAttrs method.

Child Reordering

After conducting over 100 separate tests, the evidence does not support the ability to

do this in a provably correct manner. There will always be cases where the original

sequence of unshared and shared nodes ultimately has little bearing on how a user wants

a document to look.

To successfully and provable maintain correct child ordering, all the children need to

be at the disposal of the user (directly or indirectly). We have shown the savings capable

by not transmitting all the content of an XML document to a limited capability device.

Instead of loosing that advantage, use placeholders to mark the location and other vital

information of large embedded objects. Like Puppeteer we will transmit low-fidelity

72

images to mobile devices that can use the degraded content. Examples would be HTML

style links to embedded objects, bounding boxes for graphics, and stylized text markup

for ASCII editors.

The existence of the placeholders will almost obviate the need for the structural

similarity map. However, there will be some content that will still not make sense to

transmit and certainly not make sense to expose the user to. Good examples are the style

nodes at the front of AbiWord and OpenOffice. Since they all exist, indeed, must exist,

at the front of their respective documents, reordering of unshared and shared children

becomes trivial.

Optimizations of Current Implementation

Edit script overhead

The edit scripts generated by the current implementation use some what verbose tags.

The tags make it very easy for a human to read the script, but impose a certain amount of

overhead. Experiments from the first set of experiments showed the potential for a 5%

reduction in edit script size by redesigning the script schema.

Edit script packaging of old data

One of the principle advantages of properly constructed edit scripts is the ability to

time-shift the current version of a document. A user can subtract edit script from a

current version and recreated a version of a document that existed in the past. Every

difference detection tool researched stores all the changed data in the edit script. A

seemingly reasonable approach may involve taking advantage of the server within the

UbiData environment.

The argument exists that the old values of a deleted or changed node do not need to

reside in the edit script. We can offload that storage requirement to the server’s disks

73

when it receives an edit from a client. Mobile clients with the processing power and

hardware needed to execute vdiff() will not be using text-only versions of documents.

They may use content reduced to save time downloading.

A client reports via the vdiff() generated edit script that it has deleted and/or modified

certain nodes. In the case of delete, the client must only communicate the delete of XID

n. On receipt of that action, the server stores the old contents of XID n in a file

maintaining all the XID, value pairs of deleted and updated nodes. For an update, the

server likewise saves the old value and XID before applying the new value. This shifting

of data storage from the diff() script to the server that patches the master files will not

save disk space. It will however reduce the amount of data that the diff() script must

contain.

XML to HTML and back

Our goal has been to allow users to edit content on devices of their choice in

applications of their choice. One possible way of allowing cross application sharing and

editing of documents lies in the use of HTML as the common format between all the

word processing applications. The user may or may not be aware that the underlying

format of his document is HTML instead of MS Word or WordPerfect. What they see in

their editor is the rendered version of the original XML document.

Immediate difficulties can be seen with using HTML as the common format. In

particular is the likely requirement that multiple XML tags get mapped to the same

HTML tag. While the Structural Similarity map can help determine when not to delete a

node from the v0 DOM, it may be insufficient to convert from HTML back to XML. It is

possible that we can embed enough hidden attributes in the HTML tags to allow for an

easy reverse transformation to XML and the XML diff() that needs to occur. Failing the

74

ability to embed hints in the HTML file the bottom up optimization discussed earlier may

help. When text nodes get matched, it provides very good clues to which parents are

good candidates for a match.

There are also known limitations of HTML to render a word processing document

correctly. Their point of origin is different (one is page oriented and the other is screen

oriented) and one has a richer feature set than the other. Users who wish to enjoy the

liberties of sharing data across unlike machines may need to adjust their habits to

accommodate their equipment’s performance.

.

CHAPTER 8
CONCLUSIONS

This research has presented change detection and propagation methods to synchronize

documents stored on various computing devices. This approach is capable of computing

changes a user makes in one document and applying those changes on another document.

The uniqueness of this capability is the changes are on a document in one format, and the

edit script is applied to a document in another format. This cross-format change

detection and propagation allows editing documents on simple devices even though the

document originates from powerful applications on desktop and server environments.

This work contributes to the state-of-the-art in the following important ways. It

presents algorithms and techniques for reducing and transforming rich content XML

documents into mobile device usable forms (specifically into ASCII text for use by a text

editor). The work also presents methods to convert the changed mobile device document

into a form usable by a sophisticated change detection tool—we can impose a primitive

XML structure on the text document. We developed tools to track how the primitive

XML and rich-content XML tag and attribute sets relate to each other and inform the

change detection engine what changes can be meaningful. The techniques also includes

heuristics on inferring (when appropriate) default attributes for inserted nodes and for

ensuring meaningful ordering of the changed document’s content.

This work comprises several first steps toward realizing the goals of UbiData:

anytime, anywhere access to data; device independent access to data; and application-

independent access to data.

75

76

Content Conversion

One of our operating assumptions is that conversion of proprietary data formats into

XML is a feasible task. Since we use AbiWord and OpenOffice to generate out XML we

were able to bypass this question. Microsoft has released OLE APIs that allow

conversion of Microsoft Office 2000 and Microsoft Office XP documents and structures

into their XML representations [DEL00]. As Microsoft has a dominant position in the

office suite of applications, adapting those programs to store data in a canonical form will

greatly broaden the potential reach of UbiData.

The use of an XML canonical format is essential to UbiData’s goal of cross-

application portability of changes to documents and data. Continued effort must develop

more sophisticated tools to convert proprietary and widespread formats into the UbiData

model.

Content Reduction

Content reduction in UbiData is a static process. Unless a radical addition to the

architecture occurs, UbiData will maintain only this static capability when hoarding files

to mobile devices. To meet the overall intent of UbiData as envisioned in the National

Science Foundation proposal, adaptation of Puppeteer techniques should be a design

goal.

XML Differencing

Completely generic XML algorithms will probably not work efficiently in the

environment we envision for UbiData. The different document structures with

OpenOffice and AbiWord provide proof that efficiencies can improve by improving the

granularity of matching. In particular, AbiWord encodes entire paragraphs under one or

a few tags. Instead of limiting ourselves to the AbiWord document structure, we know

77

that a better match (better in terms of size of diff() produced) can occur by performing

approximate string matching against the unmatched paragraphs.

Another fundamental drawback to generic XML diff() solutions is their deletion of

unconverted data. Modifications to prevent this are fairly straight forward. As the

complexities of the originating documents rise, it is essential to solve the child reordering

problem with or without the use of placeholders. It is also possible that a hybrid

approach will solve child reordering by putting placeholders only between shared tags: all

unshared tags that happen before any unshared nodes can then be prepended to the child

list.

Continued efforts at meeting the challenges of UbiData are well worth the effort. The

world continues to become more mobile in terms of people, work, computing, and

communications. Failure to achieve more seamless and automated integration of our

various working sets will cause ever-growing losses in productivity. As the economy

grows ever more competitive, lost productivity leads to lost economic opportunities and

growth for people and organizations.

LIST OF REFERENCES

[AHM95] Ahmad, T., M. Clary, O. Densmore, S. Gadol, A. Keller and R. Pang. “The
DIANA Approach to Mobile Computing.” Presented at MOBIDATA: NSF
Workshop on Mobile and Wireless Information Systems. Rutgers University,
Brunswick, NJ. May 1995. 15 May 2002 <http://www-db.stanford.edu/pub/
keller/1994/diana-mobidata-short.pdf>.

[APA02a] Apache Software Foundation. “Xalan C++ XSLT Processor.” 15 May 2002
<http://xml.apache.org.xalan-c/index.html>.

[APA02b] Apache Software Foundation. “Xerces C++ Parser.” 15 May 2002
<http://xml.apache.org/xerces-c/index.html>.

[BRO95] Brockschmidt, K. Inside OLE. Redmond, Washington: Microsoft Press,
1995.

[CHA95] Chappell, D. Understanding ActiveX and OLE. Redmond, Washington:
Microsoft Press, 1995.

[CHA96] Chawathe, S. S., A. Rajaraman, H. Garcia-Molina, and J. Widom. “Change
detection in hierarchically structured information.” Presented at ACM SIGMOD
International Conference on Management of Data. Montreal, Quebec, Canada. 4-
6 June 1996. 15 May 2002 <http://www-db.stanford.edu/c3/papers/html/tdiff3-
8/tdiff3-8.html>.

[COB02] Cobéna, G., S. Abiteboul, A. Marian. “Detecting Changes in XML
Documents.” Presented at the International Conference on Data Engineering.
San Jose, California. 26 February-1 March 2002. 15 May 2002 <http://www-
rocq.inria.fr/~cobena/cdrom/www/xydiff/eng.htm>.

[DEC95] Decouchant, D., V. Quint, M. Romero Salcedo. “Structured Cooperative
Authoring on the World Wide Web.” Presented at the Fourth International
World Wide Web Conference. Boston Massachusetts. 11-14 December 1995. 15
May 2002 <http://www.w3.org/Conferences/WWW4/Papers/91>.

[DEL00] de Lara, E., D. Wallach, W. Zwaenepoel. “Opportunities for Bandwidth
Adaptation in Microsoft Office Documents.” Presented at the 4th USENIX
Windows Systems Symposium. Seattle, Washington. 3-4 August 2000. 15 May
2002 <http://www.cs.rice.edu/~delara/papers/usenix_win2000/index.html>.

78

http://www-db.stanford.edu/pub/ keller/1994/diana-mobidata-short.pd
http://www-db.stanford.edu/pub/ keller/1994/diana-mobidata-short.pd
http://xml.apache.org.xalan-c/index.html
http://xml.apache.org/xerces-c/index.html
http://www-db.stanford.edu/c3/papers/html/tdiff3-8/tdiff3-8.html
http://www-db.stanford.edu/c3/papers/html/tdiff3-8/tdiff3-8.html
http://www-rocq.inria.fr/~cobena/cdrom/www/xydiff/eng.htm
http://www-rocq.inria.fr/~cobena/cdrom/www/xydiff/eng.htm
http://www.w3.org/Conferences/WWW4/Papers/91
http://www.w3.org/Conferences/WWW4/Papers/91
http://www.cs.rice.edu/~delara/papers/usenix_win2000/index.html
http://www.cs.rice.edu/~delara/papers/usenix_win2000/index.html

79

[DEL01a] de Lara, E., R. Kumar, D. Wallach, and W. Zwaenepoel. “Position
Summary: Architectures for Adaptation Systems.” Presented at Eighth IEEE
Workshop on Hot Topics in Operating Systems (HotOS-VIII), Schloss Elmau,
Germany. May 2001. 15 May 2002
<http://www.cs.rice.edu/~delara/papers/hotos2001/index. html>.

[DEL01b] de Lara, E., D. Wallach, W. Zwaenepoel. “Collaboration and Document
Editing on Bandwidth-Limited Devices.” Presented at Workshop on Application
Models and Programming Tools for Ubiquitous Computing (UbiTools'01).
Atlanta, Georgia. September 2001. 15 May 2002 <http://www.cs.rice.edu/
~delara/papers/ubitools/index.html>.

[FLI01] Flinn, J., E. de Lara, M. Satyanarayanan, D. Wallach, and W. Zwaenepoel.
“Reducing the Energy Usage of Office Applications.” Presented at IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware 2001).
Heidelberg, Germany. 12-16 November 2001. 15 May 2002 <http://www.cs.
rice.edu/~delara/papers/middleware2001/index.html>.

[FSF02a] Free Software Foundation. “Flex.” 15 May 2002 <http://www.gnu.org/
software/flex/flex.html>.

[FSF02b] Free Software Foundation. “Diffutils.” 15 May 2002 <http://www.gnu.org/
software/diffutils/diffutils.html>.

[HEL01] A. Helal, J. Hammer, A. Khushraj, and J. Zhang. “A Three-tier Architecture
for Ubiquitous Data Access." Presented at First ACS/IEEE International
Conference on Computer Systems and Applications. Beirut, Lebanon. 2001. 15
May 2002 <http://citeseer.nj.nec.com/rd/80023731%2C498381%2C1%2C0.25%
2CDownload/http%253A%252F%252Fciteseer.nj.nec.com/cache/papers/cs/2499
1/http%253AzSzzSzwww.harris.cise.ufl.eduzSzprojectszSzpublicationszSz3tier.p
df/a-three-tier-architecture.pdf>.

[IBM02a] IBM Corp. “XML Diff and Merge Tool.” 15 May 2002 <http://www.
alphaworks.ibm.com/tech/xmldiffmerge>.

[IBM02b] IBM Corp. “Pervasive Computing.” 15 May 2002 <http://www-3.ibm.com/
pvc/pervasive.shtml >.

[JON94] Jones International and Jones Digital Century. “Osborne Computer
Corporation.” Jones Telecommunications and Multimedia Encyclopedia. 1994.
15 May 2002 <http://www.digitalcentury.com/encyclo/update/osborne.html>.

[LI02] Li, D. “Sharing Single User Editors by Intelligent Collaboration Transparency.”
Presented at the Third Annual Collaborative Editing Workshop, ACM Group.
Boulder, Colorado. 30 September 2002. 15 May 2002
<http://www.research.umbc.edu/~jcampbel/Group01/Li_iwces3.pdf>.

http://www.cs.rice.edu/~delara/papers/hotos2001/index.html
http://www.cs.rice.edu/~delara/papers/hotos2001/index.html
http://www.cs.rice.edu/~delara/papers/ubitools/index.html
http://www.cs.rice.edu/~delara/papers/ubitools/index.html
http://www.cs.rice.edu/~delara/papers/middleware2001/index.html
http://www.cs/
http://www.gnu.org/ software/flex/flex.html
http://www.gnu.org/ software/flex/flex.html
http://www.gnu.org/ software/diffutils/diffutils.html
http://www.gnu.org/ software/diffutils/diffutils.html
http://citeseer.nj.nec.com/rd/80023731%2C498381%2C1%2C0.25%2CDownload/http%253A%252F%252Fciteseer.nj.nec.com/cache/papers/cs/24991/http%253AzSzzSzwww.harris.cise.ufl.eduzSzprojectszSzpublicationszSz3tier.pdf/a-three-tier-architecture.pdf
http://citeseer.nj.nec.com/rd/80023731%2C498381%2C1%2C0.25%2CDownload/http%253A%252F%252Fciteseer.nj.nec.com/cache/papers/cs/24991/http%253AzSzzSzwww.harris.cise.ufl.eduzSzprojectszSzpublicationszSz3tier.pdf/a-three-tier-architecture.pdf
http://www.alphaworks.ibm.com/tech/xmldiffmerge
http://www-3.ibm.com/pvc/pervasive.shtml
http://www.digitalcentury.com/encyclo/update/osborne.html
http://www.research.umbc.edu/~jcampbel/Group01/Li_iwces3.pdf

80

[MAR01] Marian, A., S. Abiteboul, L. Mignet. “Change-Centric Management of
Versions in an XML Warehouse.” Presented at 27th International Conference of
VLDBs. Rome, Italy. 11-14 September 2001. 15 May 2002
<http://www.vldb.org/conf/2001/P581.pdf>.

[MAC00] MacDonald, J. “File System Support for Delta Compression.” Master of
Computer Science Thesis at University of California at Berkeley, Department of
Electrical and Computer Sciences. Berkeley California. 2000. 15 May 2002
<http://www.sourceforge.net/projects/xdelta> and <http://citeseer.nj.nec.com/rd/
0%2C312806%2C1%2C0.25%2CDownload/http%253A%252F%252Fciteseer.nj.
nec.com/cache/papers/cs/14402/http%253AzSzzSzwww.cs.berkeley.eduzSz%257
EjmacdzSzxdfs.pdf/macdonald00file.pdf>.

[MEY86] Myers, E. “An O(ND) difference algorithm and its variations.”
Algorithmica, 1 (1986): 251-266.

[NOB97] Noble, B., M. Satyanarayanan, D. Narayanan, J. Tilton, J. Flinn, and K.
Walker. “Agile application-aware adaptation for mobility”. Operating Systems
Review (ACM) 51, 5 (December 1997): 276-287.

[OPE02] OpenOffice.org. “OpenOffice.org Source Project.” 15 May 2002
<http://www. openoffice.org/>.

[POO99] Poon, T., F. Curbera, D. Epstein. “Efficient encoding of XML updates.”
Presented at Third Annual GCA XML Developer’s Conference, Montreal, Canada.
19-20 August 1999. 15 May 2002 <http://ibiblio.org/bosak/conf/xmldev99/
curbera/curbera.pdf>.

[SCH01] Scholtz, J. “Ubiquitous Computing in the Military Environment.” Presented
at SPIE: Aerosense 2001. Orlando, Florida, 17-19 April 2001. 15 May 2002
<http://www.darpa.mil/ipto/research/uc/SPIE-f.pdf>.

[SHA89] Shasha, D. and K. Zhang. “Fast Parallel Algorithms for the Unit Cost Editing
Distance Between Trees”. Presented at the ACM Symposium on Parallel
Algorithms and Architectures. Santa Fe, New Mexico. 18-21 June 1989. 15 May
2002 <http://www.cs.queensu.ca/TechReports/Reports/1995-372.ps>.

[SOU02] SourceGear Corporation. “AbiWord: Word Processing for Everyone.” 15
May 2002 <http://www.abisource.com/>.

[TRI96] Tridgell, A., P. Mackerras. “The rsync algorithm.” In ANU Computer Science
Technical Reports - TR-CS-96-05. June 1996. 15 May 2002 <http://cs.anu.edu.
au/techreports/1996/TR-CS-96-05.ps.gz>.

[WAL00] Walsh, N. “Making all the difference.” Sun Microsystems Technical Report.
XML Technology Center, Menlo Park, California. February 2000. 15 May 2002
<http://www.sun.com/xml/developers/diffmk>.

http://www.vldb.org/conf/2001/P581.pdf
http://www.vldb.org/conf/2001/P581.pdf
http://citeseer.nj.nec.com/rd/0%2C312806%2C1%2C0.25%2CDownload/http%253A%252F%252Fciteseer.nj.nec.com/cache/papers/cs/14402/http%253AzSzzSzwww.cs.berkeley.eduzSz%257EjmacdzSzxdfs.pdf/macdonald00file.pdf
http://www.sourceforge.net/projects/xdelta
http://www.openoffice.org/
http://ibiblio.org/bosak/conf/xmldev99/curbera/curbera.pdf
http://www.darpa.mil/ipto/research/uc/SPIE-f.pdf
http://www.cs.queensu.ca/TechReports/Reports/1995-372.ps
http://www.cs.queensu.ca/TechReports/Reports/1995-372.ps
http://www.abisource.com/
http://cs.anu.edu.au/techreports/1996/TR-CS-96-05.ps.gz
http://www.sun.com/xml/developers/diffmk

81

[WWW00] Word Wide Web Consortium. Extensible Markup Language (XML) 1.0
(Second Edition), W3C Recommendation, 6 October 2000. 15 May 2002
<http://www.w3.org/TR/2000/REC-xml-20001006>.

[WWW01] Word Wide Web Consortium. Extensible Stylesheet Language (XSL) 1.0,
W3C Recommendation, 15 October 2001. 15 May 2002 <http://www.w3.org/
TR/xsl/>.

[ZHA89] Zhang, K. and D. Shasha. “Simple fast algorithms for the editing distance
between trees and related problems.” SIAM Journal of Computing, 18 (1989):
1245-1262. 15 May 2002 <http://citeseer.nj.nec.com/cache/papers/cs/16386/
http:zSzzSzwww.cs.brown.eduzSzpeoplezSzpnkzSzprojectszSzvisionzSz..zSz..zS
zpaperszSzesa-treedist.pdf/klein98computing.pdf>.

[ZHA01] J. Zhang. “Mobile Data Service: Architecture, Design, and Implementation.”
Doctoral dissertation presented to University of Florida Department of Computer
& Information Science & Engineering. Gainesville, Florida. 2002.

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/xsl/
http://citeseer.nj.nec.com/cache/papers/cs/16386/http:zSzzSzwww.cs.brown.eduzSzpeoplezSzpnkzSzprojectszSzvisionzSz..zSz..zSzpaperszSzesa-treedist.pdf/klein98computing.pdf
http://citeseer.nj.nec.com/cache/papers/cs/16386/http:zSzzSzwww.cs.brown.eduzSzpeoplezSzpnkzSzprojectszSzvisionzSz..zSz..zSzpaperszSzesa-treedist.pdf/klein98computing.pdf

BIOGRAPHICAL SKETCH

Michael Lanham was born in Lewiston, New York, the United States of America. He

received his Bachelor of Science (BS) in computer science from the North Carolina State

University (NCSU) Department of Computer Science. He also received his BS in

computer engineering from the NCSU Department of Electrical and Computer

Engineering.

He received his commission as an Infantry Second Lieutenant in the United States

Army through the NCSU Reserve Officer Training Corps (ROTC) department. He

completed Infantry Officer's Basic Course and Ranger School and then became a platoon

leader in the ”Can Do” 2nd Battalion, 15th Infantry Regiment, 3rd Infantry Division,

Schweinfurt, Germany. While with 2-15 Infantry, his battalion served a six-month

rotation with the United Nations Protection Force (UNPROFOR) in the Former Yugoslav

Republic of Macedonia (FYROM) as Task Force Able Sentry. Michael then became the

aide de camp to Commander, Special Operations Command Europe, Headquarters,

United States European Command, Stuttgart, Germany. While he was at Stuttgart, his

unit participated in peacekeeping missions in the Balkans as part of Operation Joint

Endeavor, Embassy evacuation operations in Liberia, West Africa, and recovery

operations in Croatia for Commerce Secretary Brown's airplane crash.

Michael returned to the United States to attend Infantry Officer's Advanced Course

and Combined Arms Services Staff School. He joined Headquarters Company, 1st

Brigade, 101st Airborne Division (Air Assault), Fort Campbell, Kentucky then took

82

http://www.cs.ncsu.edu/
http://www.cs.ncsu.edu/
http://www.ece.ncsu.edu/
http://www.ece.ncsu.edu/
http://www-benning.army.mil/11th/2-11INF/Index.htm
http://www-benning.army.mil/RTB/RANGER/Reporting.htm
http://www.stewart.army.mil/2bde/default.htm
http://www.fas.org/man/dod-101/ops/able_sentry.htm
http://www.eucom.mil/Directorates/ECSO/index.htm
http://www.eucom.mil/index.htm?http://www.eucom.mil/Standard_tf.htm&0
http://www.eucom.mil/index.htm?http://www.eucom.mil/Standard_tf.htm&0
http://www.eucom.mil/Directorates/ECPA/index.htm?http://www.eucom.mil/Directorates/ECPA/Operations/ojf.htm&2
http://www.eucom.mil/Directorates/ECPA/index.htm?http://www.eucom.mil/Directorates/ECPA/Operations/ojf.htm&2
http://www-benning.army.mil/CATD/tactics/iccc/ICCCHOME.HTM
http://www-cgsc.army.mil/cas3/index.htm
http://www.campbell.army.mil/1bde/1bde.htm
http://www.campbell.army.mil/1bde/1bde.htm
http://www.campbell.army.mil/

83

command of Delta Company, 1st Battalion, 327th Infantry Regiment. Delta Companies

in the 101st Airborne Division (ABN DIV) and 82 ABN DIV are Heavy Anti-Armor

Companies composed of 87 men, 28 HMMWVs, 20 TOW anti-tank missiles, 10 .50 cal

machine guns, and 10 40mm automatic grenade machine guns. His battalion had

multiple rotations to the National Training Center in California and the Joint Readiness

Training Center in Louisiana. The Army selected him for Advanced Civil Schooling and

assigned him to the University of Florida to earn a Master of Engineering in computer

science. Upon graduation, he will teach computer science at the United States Military

Academy.

Michael is married to a wonderful Irish-woman and has an incredibly adventurous and

happy 1-year-old son.

http://www.campbell.army.mil/1327in/1327in.htm
http://www.irwin.army.mil/
http://www.jrtc-polk.army.mil/
http://www.jrtc-polk.army.mil/
http://www.usma.army.mil/
http://www.usma.army.mil/

	Motivation
	Ubiquitous Data Access Project
	Use Case
	Architectural Overview
	Why UbiData Standardized On XML
	Content Reduction Defined
	Difference Algorithms versus Value Shipping

	Content Reintegration After Transformations
	Bandwidth Adaptation
	Puppeteer
	Odyssey
	Alliance

	Traditional Difference Algorithms
	Binary Difference Algorithms
	The Rsync Algorithm and rsync() Program
	The Xdelta() Program

	XML Specific Algorithms
	Sun Microsystems
	IBM’s XML diff\(\) and merge\(\) and xmltree�
	The laDiff() Utility
	The XyDiff() Program Suite

	Use Case (Revisited)
	Content Customization
	Content Reduction
	Content Conversion

	Meta-Data to Support Content Customization and Structural Similarities
	General
	Intersection Map
	Symmetric Difference Map

	Client-Side Difference Detection
	Imposing a Minimal XML Structure on Text Documents
	XML Difference Detection—verbose-diff \(vdiff\�
	XML Difference Application/Patching
	Content Reduction
	Client-Side Difference Detection
	Imposing a Minimal XML Structure on Text Documents
	Algorithm Review
	Component Implementations
	ParseAndLabel
	ParseMapFile
	BuildSubTreeLookupTable
	FindAndUseIDAttrs
	TopDownMatchHeaviestTrees
	PeepHoleOptimization
	MarkOldTree and MarkNewTree
	AdjustForUnSharedChildren
	BuildLeastCostEditScriptForWeakMoves
	DetectUpdatedNodes
	ConductAttributeOperations

	Peephole Optimization
	Current Implementation
	Two Failed Approaches

	AdjustForUnSharedChildren
	Unsuccessful Approaches
	Current Approach

	Conducting Attribute Operations
	Test Platform, Equipment, and Methodology
	Abiword as Data Generator
	OpenOffice Writer as Data Generator
	Results
	Bandwidth Conservation Through Content Conversion
	Bandwidth Conservation Through Client-Side Use of GNU diff()
	Comparison of vdiff(), XyDiff(), and GNU diff()

	Peephole Optimization
	Child Reordering
	Optimizations of Current Implementation
	Edit script overhead
	Edit script packaging of old data

	XML to HTML and back
	Content Conversion
	Content Reduction
	XML Differencing

	Date: 15 May 2002
	Type: Final Thesis, August 2001 - June 2002
	Title: Change detection in XML documents of differing levels of structural verbosity
in support of ubiquitous data access
	Authors: Lanham, Michael J.
	Fund No:
	Org: University of Florida, Department of Computer and Information Sciences &
Engineering, Gainesville, FL 32602
	Org No:
	Prop No:
	Code:
	Abstract: Extensible markup Language (XML) and difference algorithms help mobile computing devices achieve interoperability with each other. XML provides applications a non-proprietary means of communicating among each other. Difference algorithms allow transferring only changes to files, not entire changed files.

This research focuses on customizing current XML difference algorithms. The goal is to detect differences between two XML files that do not necessarily share the same structure. Small devices are generally incapable of presenting and processing parts of multi-media documents. They also have less memory and storage space than desktop units have. The sending device reduces transmission time by removing those contents, and other large embedded objects, from the data stream. The user can edit the streamlined file on the mobile device. Transmitting on the changes to this edited file conserves bandwidth, connection time, and battery-power. Integrating the transmitted changes back into the originating complex document becomes a fundamental requirement and a significant challenge.
	Pages: 95
	Price:
	Terms: XML, change detection, ubiquitous data access

